首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
为了研究HMX含量、粒径和形貌对复合推进剂临界起爆压力的影响,对设计出的7组配方开展了临界起爆条件试验,计算了相应的冲击波临界起爆压力。结果表明,HMX质量分数分别为5%、10%、15%时,推进剂的临界起爆压力分别是15.40、 7.99、 7.55 GPa;HMX质量分数相同,中位粒径分别为5.432、 6.482、 9.121、 136.800 μm时,推进剂的临界起爆压力分别是7.99、 7.99、 9.42 ~15.40、 9.04 ~15.40 GPa;当HMX的颗粒分布跨度较大时,临界起爆压力为7.99 GPa。随着HMX的含量在一定范围内增高,复合推进剂的临界起爆压力减小;随着HMX的中位粒径增大,复合推进剂的临界起爆压力增大;颗粒的类球形结构能大幅提高临界起爆压力。  相似文献   

2.
为了研究HMX基含铝炸药的冲击起爆特性,对其进行了两种加载压力下的冲击起爆试验。结果表明,加载压力为14.68 GPa时,其到爆轰距离为12.04~15.38 mm;加载压力为15.55 GPa时,到爆轰距离为10.23~12.01 mm;稳定爆轰后的爆轰压力约为25 GPa。基于圆筒试验确定了HMX基含铝炸药的JWL状态方程参数,结合两种加载压力下的冲击起爆试验结果进行数值模拟,标定并验证了点火增长模型反应速率方程参数。计算结果与试验结果一致。得到14.68 GPa加载压力下HMX基含铝炸药到爆轰时间为2.5 μs,到爆轰距离为13.70 mm;15.55 GPa加载压力下的到爆轰时间为1.9 μs,到爆轰距离为10.60 mm。计算结果表明,加载压力增大,前导冲击波速度增长变快,波阵面压力增长变快,炸药到爆轰时间与到爆轰距离减小,爆轰成长阶段同一时刻下的波阵面压力增长速率也随之增大。  相似文献   

3.
利用慢速烤燃试验和冲击波感度试验研究了FOX-7与 RDX不同混合比例对炸药响应特性的影响。试验表明:当FOX-7的混入量(质量分数)低于72%时,炸药在慢速烤燃试验中的响应剧烈程度表现为爆轰反应,其临界起爆压力接近6.62 GPa;当FOX-7的混入量(质量分数)等于72%时,炸药在慢速烤燃试验中的响应剧烈程度由爆轰降至爆燃,其临界起爆压力升至7.27 GPa;当配方中完全采用FOX-7时,炸药在慢速烤燃试验中的响应剧烈程度由爆燃降至燃烧,临界起爆压力升至8.24 GPa。造成上述试验结果的原因可能是压装炸药在成型过程中因颗粒的破碎、重排作用使FOX-7对RDX形成包覆,进而改善了RDX材料点火增长速度快的本质特点。  相似文献   

4.
为研究新型燃烧催化剂复合有机酸铅(Mu-Pb)对改性双基(CMDB)推进剂的热分解和燃烧性能的影响,通过靶线法分析了添加Mu-Pb的HMX/Al-CMDB推进剂的热分解和燃烧特性;同时,采用差示量热扫描仪(DSC)进一步研究了Mu-Pb对CMDB推进剂及硝化棉(NC)/硝化甘油(NG)、奥克托今(HMX)热分解行为的影响。结果表明,一定压力区间内,随着Mu-Pb含量的增加,CMDB推进剂燃速有所升高,燃速压强指数n有降低趋势。当Mu-Pb质量分数由2%增加至4%时,10 MPa下CMDB推进剂的燃速提高了15%,且10~22 MPa时的n由0.67降低至0.40。Mu-Pb对CMDB推进剂热分解的两个阶段均有催化作用,因而可以提高推进剂的中、低压燃速,且其对第2阶段HMX的热分解促进作用更为显著,可以使HMX的热分解表观活化能Ea降低近70%,而对第1阶段NC/NG的Ea影响相对较小。  相似文献   

5.
以复合改性双基(CMDB)推进剂为基础,研究了3,5-二(硝氨基)-1,2,4-三唑肼盐(HDNAT)与推进剂主要组分间的相容性,以及用HDNAT替代推进剂中的RDX/HMX对推进剂燃烧性能的影响。结果表明,HDNAT与CMDB推进剂主要组分HMX、NC、NG、RDX相容性良好,与DINA相容性不佳,但由于配方中DINA的质量分数仅为3%~5%,HDNAT可安全应用于该类推进剂配方中;RDX-CMDB及HMX-CMDB推进剂中加入一定量HDNAT可大幅度提高燃速,其中HMX-CMDB推进剂中HDNAT质量分数达到20%时,10MPa燃速可突破40mm/s。  相似文献   

6.
采用喷雾干燥技术制备了奥克托今:聚氨基甲酸乙酯弹性纤维质量比为97∶3的纳米复合含能微球(HMX/Estane)。利用SEM、XRD对HMX原料和HMX/Estane进行了表征,并测试了其热分解特性和撞击感度。结果表明:制备出的样品呈规则的球形,粒径约1~5μm。分别对HMX原料与HMX/Estane的性能进行了测试,得出HMX原料与HMX/Estane的活化能分别为523.16kJ/mol和492.69kJ/mol;热爆炸临界温度分别为279.34℃和277.59℃;特性落高分别为18.6cm和75.5cm。  相似文献   

7.
纳米Al2O3对HMX临界起爆压力的影响   总被引:1,自引:0,他引:1  
采用锰铜测压法和小隔板实验(SSGT)测试了纳米Al2O3对HMX临界起爆压力影响,对纳米Al2O3在混合炸药中的作用机理进行了探讨,混合炸药的配比HMX/纳米Al2O3为98 :2,密度为90%理论密度。结果表明,与纯HMX相比,纳米Al2O3的间充作用使混合炸药的临界起爆压力升高,冲击波感度明显降低,并给出了HMX/纳米Al2O3(98 :2)的临界起爆压力。  相似文献   

8.
传统光管在高雷诺数下的传热效果不理想,因此提出在水介质中添加微米Cu颗粒作为工作介质来强化管内换热的方法。建立了Cu-水微米流的多相流传热物理模型,采用基于颗粒动力学的欧拉-欧拉双流体模型,对粒径分别为10μm、50μm、100μm和500μm,流速分别为1 m/s、1.5 m/s、2 m/s和2.5 m/s,颗粒体积分数分别为5%、10%、15%和20%进行了传热Nu和阻力损失f数值计算,结果表明:Cu-水微米流的努塞尔数Nu随雷诺数Re和颗粒体积分数的增大而增大,而随粒径的增大而总体趋势减小;摩擦因子f随颗粒体积分数的增大而增大,而随雷诺数Re增大而增小;传热综合性能评价因子η随颗粒体积分数的增大而增大,随着粒径的增大而总体趋势减小。粒径10μm的传热综合性能在研究的粒径范围内最佳,η达到1.1~2.3。  相似文献   

9.
为了研究奥托-Ⅱ[m(1,2丙二醇二硝酸酯)/m(癸二酸二丁酯)/m(邻二硝基二苯胺):76.0/23.5/0.5)]推进剂的安全性和能量输出特性,利用大隔板试验和空中爆炸压力测试系统分别测试了奥托-Ⅱ推进剂的冲击波感度和能量输出特性。结果表明:奥托-Ⅱ推进剂的临界隔板厚度(L50)为17.5 mm,临界起爆压力约为11.03GPa,与铸装TNT接近,具有较好的安全性。与1.0 kg A-IX-I[m(RDX)/m(钝感剂):95.0/5.0)]炸药相比,1.0 kg的A-IX-I和1.96 kg的奥托-Ⅱ推进剂耦合爆炸产生的冲击波超压和冲量分别提高了62.8%和25.9%,主发装药和推进剂的耦合爆炸是提高鱼雷爆炸威力的一种新型设计思路。  相似文献   

10.
采用LS-DYNA软件进行数值仿真,通过改变炸药撞击速度以改变损伤程度,探究损伤和垫层材料对B炸药起爆行为的影响。计算结果表明,当第2次撞击速度一定时,起爆时间t与第1次撞击速度v1的关系为:t=-0.02v1+C1,冲击起爆的距离也随之减小。主要因为第1次撞击速度增大,导致B炸药发生轻微变形,内部的损伤程度随之增大,第2次撞击时更容易被起爆。3种不同垫层中,波阻抗较大的材料抗撞击能力强,B炸药内部不易产生损伤,冲击起爆的时间和距离较长;而B炸药的临界起爆压力差别不大,临界起爆压力的范围在31.4832.98 GPa之间。表明不同垫层材料会影响损伤后B炸药冲击起爆的时间和距离,而不会影响临界起爆压力。  相似文献   

11.
Fine and coarse diamond powders were shock-compacted at peak pressures of 77, 90, and 108 GPa. The densification and consolidation mechanisms of diamond powders under shock compression were investigated. The densification behaviour of the diamond powders depended strongly on the particle size of the starting materials. Fine diamond powders were densified primarily by plastic deformation, while coarse diamond powders were densified mainly by particle fracture. The relative densities of the compacted diamond samples increased with an increase in the initial particle size of the diamond and with shock pressure. The consolidation mechanism of the diamond powders under shock compression was closely related to the densification mechanism, and depended on the initial particle size of the diamond. At a shock pressure of 90 GPa, particle sizes of 2 to 4 m grade and 10 to 20 m grade were desirable as the starting material in order to produce well-bonded diamond compacts. Diamond compacts having microhardness values over 80 GPa were obtained from 2 to 4 m grade and 10 to 20 m grade diamond powders at a shock pressure of 90 G Pa, and their relative densities were 88.5% and 91.0%, respectively.  相似文献   

12.
Four polymeric powders, ranging in average particle size from 75 to 170μm, were shock consolidated at pressures between 6.5 and 14 GPa. High green densities of the order of 95% of theoretical were obtained as a result of plastic deformation, particle comminution and interparticle bonding. Compressive strength to fracture of up to 60 MPa was attained and satisfactory post-shock creep properties were noted. Explosive compacating parameters are discussed and related to impact and material characteristics of direct, axisymmetric systems.  相似文献   

13.
采用自行设计的动态加载装置对HMX基、HMX/NTO基和HMX/FOX-7基3种温压炸药撞击响应规律进行了研究,获得炸药的临界点火速度,并通过密闭燃烧罐分析撞击后回收试样的燃烧特性。结果表明:3种温压炸药药柱在高速撞击下均经历了冲击、塑性变形、破碎飞散和点火反应阶段;HMX基、HMX/NTO基和HMX/FOX-7基温压炸药的临界点火速度分别为302.9、312.3 m/s和315.3 m/s,NTO和FOX-7能够提高温压炸药的临界点火速度;分析撞击后回收试样的燃烧特性发现,与HMX基温压炸药相比,HMX/NTO基和HMX/FOX-7基温压炸药升压时间分别增加了103.6%和103.3%,升压速率分别降低了17.3%和21.1%,且撞击后的燃烧速率显著降低。  相似文献   

14.
In this study, molecular dynamics (MD) simulations are performed to form glassy silica from meltedb-cristobalite using cooling rates of 2, 20 and 200 K/ps. The resulting glassy silica samples are then shocked at particle velocities ranging from 0.3 to 11 km/s in the MD simulations. The effect of the cooling rate on the shock wave velocity is observed for particle velocities below 2 km/s. Moreover, the simulated pressure and density of the shocked glassy silica increase as the cooling rate increases. As compared with the experimental data, the MD simulation can approximately identify the initiation of densification and predict the shock wave velocity within the reasonable accuracy. The simulated pressure and density of the shocked silica match the experimental and EOS analysis data well when the shock pressure is below 500 GPa. However, the proposed MD simulations under-estimate the density when the glass is shocked at pressures above 500 GPa, which indicates that a better interatomic potential model is required for modeling silica under ultrahigh pressures.  相似文献   

15.
采用不同粒径的Ni粉与硅橡胶(110型)按质量比2.4∶1.0制成Ni/硅橡胶复合材料, 分别测量了其压敏导电性及介电性质, 并结合扫描电镜照片对其微观导电机制进行了分析。结果表明随着填料Ni粉粒径的减小, Ni/硅橡胶复合材料的直流电阻率对外加压强更加敏感: 在低压强下, 粒径为74、48和18 μm的样品的电阻率随压强的变化率分别为1.73×104、2.59×104和3.71×10 4 Ω·m/kPa。样品直流电阻率陡降的区域随粒径的减小向压强较小的方向移动, 显示出复合材料的渗流阈值与填充粒子的粒径有关: 粒径越小, 渗流阈值也越小。Ni/硅橡胶复合材料的交流电导率、介电常数、介电损耗均随填料Ni粉粒径的减小而变大: Ni粉粒径为18 μm的Ni/硅橡胶复合材料的电导率约为10-2 S·m-1, 比74 μm粒径样品的电导率(约10-7 S·m-1)提高了5个数量级; 对应的介电常数由约102提高到约103。改变填料Ni粉粒径可以有效地调节复合材料的弹性和压敏、电输运特性。   相似文献   

16.
Single-wall carbon nanotube samples were studied under high pressures to 62 GPa using designer diamond anvils with buried electrical microprobes that allowed for monitoring of the four-probe electrical resistance at elevated pressure. After initial densification, the electrical resistance shows a steady increase from 3 to 42 GPa, followed by a sharp rise above 42 GPa. This sharp rise in electrical resistance at high pressures is attributed to opening of an energy band gap with compression. Nanoindentation hardness measurements on the pressure-treated carbon nanotube samples gave a hardness value of 0.50 +/- 0.03 GPa. This hardness value is approximately 2 orders of magnitude lower than the amorphous carbon phase produced in fullerenes under similar conditions. Therefore, the pressure treatment of single-wall carbon nanotubes to 62 GPa did not produce a superhard carbon phase.  相似文献   

17.
为了研究RDX和HMX在机械刺激下的临界反应阈值以及丙酮重结晶工艺对它们的影响,采用BAM撞击感度仪和摩擦感度仪测试了不同温度条件下的临界撞击能量和临界摩擦力。结果显示,80、60、40 ℃和25 ℃下,RDX的临界撞击能量分别为5.0、7.5、7.5、7.5 J,HMX的分别为4.0、4.0、5.0、5.0 J;RDX的临界摩擦力分别为120、120、128、144 N,HMX的分别为108、108、108、120 N。丙酮重结晶后,RDX在25 ℃的临界撞击能量和临界摩擦力分别为5.0 J、128 N;HMX在80、60、40 ℃和25 ℃下的临界撞击能量均为7.5 J,临界摩擦力分别为108、108、120、128 N。撞击感度和摩擦感度的结果表明:在25~80 ℃范围内,RDX和HMX的机械感度随着温度的提高呈下降趋势,重结晶工艺对RDX和HMX的机械感度存在着一定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号