首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A. Nasser 《Corrosion Science》2010,52(9):2878-2890
This paper presents specific experiments which were developed in order to assess galvanic currents in macrocell corrosion specimens involving active steel in carbonated concrete and passive steel in sound concrete. The influence of the steel-concrete interface condition on the galvanic current was also experimentally investigated. To focus on macrocell corrosion rate assessment, the initiation time of the corrosion process (concrete carbonation) was accelerated. FEM simulations were carried out in order to enhance the physical comprehension of these corrosion experiments. It was found that, in realistic condition, the electrical coupling of active and passive steel areas leads to high galvanic currents and consequently high corrosion levels according to RILEM recommendation. Moreover, steel-concrete interfacial defaults significantly increase the macrocell driving potential and, therefore, the galvanic corrosion current.  相似文献   

2.
Inhomogeneous corrosion in reinforced concrete is investigated using a beam with a flexural crack intersecting the reinforcement. An Evans diagram representation of the macrocell corrosion system is developed. The relationship between the current density and the potentials relative to the crack obtained from the Tafel polarization responses of active and passive steel in concrete compares favorably with the experimental values. When both microcell and macrocell mechanisms contribute to metal loss at the crack, the Evans diagram representation indicates that an increase in the macrocell current density results in a decreasing contribution from the local microcell at the macrocell anode.  相似文献   

3.
In harsh chloride bearing environments stainless steel reinforcing bars offer excellent corrosion resistance and very long service life for concrete structures, but the high costs limit a more widespread use. Manganese bearing nickel‐free stainless steels could be a cost‐effective alternative. Whereas the corrosion behavior of stainless steels in alkaline solutions, mortar and concrete is quite well established, only little information on the reasons for the high pitting resistance are available. This work reports the results of pitting potential measurements in solutions simulating alkaline and carbonated concrete on black steel, stainless steel DIN 1.4301, duplex steel DIN 1.4462, and nickel‐free stainless steel DIN 1.4456. Duplex and nickel‐free stainless steels are fully resistant even in 4 M NaCl solutions with pH 13 or higher, the lower grade DIN 1.4301 shows a wide scatter between fully resistant and pitting potentials as low as +0.2 V SCE. In carbonated solutions with pH 9 the nickel‐free DIN 1.4456 shows pitting corrosion at chloride concentrations ≥3 M. This ranking of the pitting resistance can be rationalized based on XPS surface analysis results: both the increase of the Cr(III)oxy‐hydroxide and Mo(VI) contents in the passive film and a marked nickel enrichment beneath the film improve the pitting resistance. The duplex DIN 1.4462 shows the highest pitting resistance, which can be attributed to the very high Cr(III)oxy‐hydroxide, to a medium Mo(VI) content in the film and to a nickel enrichment beneath the film. Upon time, the protective properties of the surface film improve. This beneficial effect of ageing (transformation of the passive film to a less Fe2+ containing, more hydrated film) will lead to higher pitting potentials. It can be concluded that short‐term solution experiments give conservative results in terms of resistance to chloride‐induced corrosion in reinforced concrete structures.  相似文献   

4.
基于宏电池腐蚀理论,将阴极区钢筋和阳极区钢筋分别浇筑成两个独立的砂浆试块,并用导线将其连接成循环电路,通过断开和连接电路来控制钢筋的微电池腐蚀和宏电池腐蚀,再将不同浓度的NO_2~-溶液分别添加到阴极试块和阳极试块中以模拟其渗透过程,通过比较NO_2~-作用前后阴阳极钢筋之间宏电池腐蚀电流的大小,来评价阴阳极钢筋表面NO_2~-的不均匀性对钢筋宏电池腐蚀行为的影响。结果表明:当NO_2~-作用于处于腐蚀状态的阳极钢筋时,能够增加阳极钢筋的极化阻抗,减少阴阳极钢筋间的宏电池腐蚀电位差,降低宏电池腐蚀电流,从而有效抑制宏电池腐蚀;当NO_2~-主要作用于处于腐蚀状态的阴极钢筋时,阴阳极钢筋间的宏电池电位差的增大易使宏电池腐蚀电流增加,存在加速钢筋宏电池腐蚀的危险。  相似文献   

5.
The paper reports the results of numerical simulations carried out with FEM and aimed at evaluating the corrosion conditions of steel bars in concrete elements subjected to chlorides. Two case studies were analysed: a reinforced concrete element subjected to de‐icing salt in the presence of a crack and a concrete tunnel in a chloride‐contaminated, water saturated soil. Attention was focused on the selection of proper values of concrete resistivity and of the parameters suitable to describe the electrochemical behaviour of steel in the different conditions of exposure. The results allowed to quantify the effects of the galvanic coupling between active and passive areas on the corrosion rate of steel.  相似文献   

6.
Corrosion of steel reinforcement in concrete exposed to chloride containing environments is a serious problem in civil engineering practice. Electrochemical methods, e.g., potential mapping, provide information whether the steel reinforcement is still passive or depassivation has been initiated. By applying such techniques no information on the type of corrosion, its extent and distribution of corrosion products is available. Particular the corrosion progress is a significant problem. Especially in the case of macrocell corrosion in reinforced concrete structures, the development at the anode cannot be separated into corrosion damage resulting from macrocell corrosion or self‐corrosion. Until now also in laboratory tests it is impossible to collect such information without destroying specimens after electrochemical testing was performed. To overcome this problem it was tried to study the steel surface within the mortar specimens by X‐ray tomography (CT). Within the scope of these investigations it could be shown, that X‐ray tomography is suitable to make corrosion pits and their development visible which are embedded in a mortar with a cover thickness of about 35 mm. In this publication the time‐dependent corrosion damage of reinforced steel is documented by X‐ray tomography.  相似文献   

7.
Laboratory investigations were performed to assess the efficacy of a proprietary ethanolamine‐based corrosion inhibitor system when applied to the surface of reinforced concrete specimens that were chloride‐contaminated to varying extents in the presence or absence of carbonation. The corrosion responses of embedded steel bars at various depths of cover were monitored electrochemically during a controlled programme of cyclic wetting and drying undertaken for several months prior to the inhibitor treatment and for approximately eighteen months thereafter. Gravimetric measurements of the quantities and distribution of corrosion on the steel were also made on completion of the exposure tests. Analysis of aqueous extracts from treated concrete revealed that the ethanolamine component of the inhibitor system penetrated to depths of more than 15 mm within the concrete. It was found that, for inhibitor‐treated specimens, there was some reduction in the corrosion rate of pre‐corroding steel at low cover depths in non‐carbonated concrete with modest levels of chloride contamination. At higher levels of chloride contamination and in carbonated specimens, however, the ethanolamine‐based inhibitor was apparently ineffective under the conditions investigated.  相似文献   

8.
This paper deals with the possible corrosion risk for steel rebars in cracked reinforced concrete structures by using acrylate gels for grouting. In the course of this project, 19 customary acrylate gels were analysed. The results of the conducted test procedures revealed that none of the tested acrylate gels can provide an active corrosion protection for the steel rebars due to their low electrolytic resistivity and low pH values. Just when applied in very thin layers (e.g., fine cracks) it seems to be possible that alkaline components of the surrounding concrete can penetrate through the gel to form a passive layer on the embedded steel rebar.  相似文献   

9.
Abstract

This paper aimed at an experimental investigation of the comparative corrosion phenomenon in the reinforcing steel of repaired chloride contaminated self-compacting concrete (SCRC) and ordinary concrete (OC) patches. This research is a continuation of a previous study in which macrocell specimens were prepared with OC having different chloride contaminations simulating the actual patch repair in the construction field. Here, in this research, the same specimens were prepared with SCRC to investigate more deeply the macrocell phenomenon in SCRC, which received limited attention in the past. Four prismatic specimens with two sets of 5 and 3% chloride contaminated SCRC at the two ends were prepared respectively, and the middle portion of these specimens was cast after 24 h with uncontaminated SCRC simulating the actual patch repair in the field. After 1 year of experimental observations of corrosion potentials and corrosion rates, interesting and novel results were obtained in comparison with OC and SCRC specimens.  相似文献   

10.
Inhibition of the corrosion of reinforced steel in concrete in 0.5 M NaCl by Arghel extract has been studied employing different electrochemical techniques in conjunction with optical images photo. Potential‐time measurements showed that introducing of Arghel extract into concrete shifts the potential of reinforced steel to more positive values. Potentiodynamic polarization curves measurements manifested that Arghel extract acts as anodic type inhibitor. Nyquist plots were characterized by a distinct charge transfer and diffusion components. A proposed equivalent circuit was used to analyze the impedance spectra of reinforced steel in concrete in 0.5 M NaCl. Optical images for the cracked lollipops samples of the reinforced steel in concrete that is immersed in 0.5 M NaCl for 18 months showed no corrosion attack even in the presence of a low concentration of Arghel which is in good agreement with the results obtained from the electrochemical techniques.  相似文献   

11.
Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4? potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.  相似文献   

12.
Reinforcement corrosion is still the most frequent reason for damage of concrete structures. It can be caused by carbonation or the ingress of chlorides. In cases of localized contaminations with chlorides, macrocells with very high corrosion rates can be established. Thereby the resulting macrocell current is dependent on many different boundary conditions like driving voltage, concrete resistivity and the geometrical arrangement of anode and cathode. In order to investigate macrocell corrosion, the herein presented research work was carried out by laboratory experiments and additionally by numerical analyses. First the numerical simulations were calibrated by laboratory measurements and thereafter, a numerical parameter study was carried out to increase the available database and identify the impact of changes in single parameters. As the focus is on geometrical effects, all laboratory specimens and numerical models were designed to represent practical conditions with diverse geometrical arrangements, e.g., slabs or beams with localized depassivations. In addition, parameters like concrete resistivity, driving voltage and cathode to anode surface area ratios have been varied. Thereafter, all results were used to derive cell factors for a simple macrocell current estimation. The present status of the project will be presented and discussed.  相似文献   

13.
Traditionally, the assessment of service life of steel reinforced concrete structures has been focused on the prediction of the time required to achieve a transition from passive to active corrosion rather than to accurately estimate the subsequent corrosion rates. However, the propagation period, i.e. the time during which the reinforcing steel is actively corroding, may add significantly to the service life. Consequently, ignoring the propagation period may prove to be a conservative approach. On the other hand the prediction of the corrosion rate may result in a very complex task in view of the electrochemical nature of corrosion and the numerous parameters involved. In order to account for the various influences an essentially empirical model has been introduced in which the electrolytic resistivity of the concrete environment serves as the major parameter. This model will be discussed for carbonation‐induced corrosion based on the commonly accepted theory of aqueous corrosion. An alternative model for microcell corrosion is proposed which is based on the commonly accepted view that anodic and cathodic sites are microscopic and their locations change randomly with time. In line with this view electrolytic resistivity can be incorporated and thus may play a significant role in the kinetics of the corrosion process. For a wide range of corrosion current densities the relationship between corrosion current density, log(icorr), and concrete resistance, log(Rcon), can then be approximated by an almost ideal linear relationship. Assuming a fixed geometrical arrangement of anodic and cathodic sites on the steel surface, this linear relationship is also valid for concrete resistivity, ρcon. However, from the theoretical treatment of the electrochemical processes underlying reinforcement corrosion it becomes evident that a linear relationship between corrosion current density and concrete resistivity does not necessarily imply that concrete resistance is dominating the overall corrosion cell resistance. In most cases a significant portion of the driving voltage of the corrosion cell will be consumed by the transfer of electrical charge involved in cathodic reactions, i.e. cathodic activation control will dominate.  相似文献   

14.
This work studies the corrosion behaviour of two corrugated lean duplex stainless steels (SAF 2001 and 2304 grades) in eight alkaline solutions (carbonated and non-carbonated, saturated Ca(OH)2 solutions with different chloride contents). 2001 stainless steel is a new grade in market because of its composition. 2304 is a grade previously studied under different conditions. However, its use as reinforcement in concrete is new. Studies are carried out by polarization curves following scanning electronic microscopy (SEM) and optical observations. Results are compared to those of carbon steel and austenitic AISI 304 and duplex SAF 2205 under similar conditions. After corrosion tests in alkaline media with chloride, ferrite tends to corrode selectively in 2304 duplex, while austenite corrodes selectively in 2001 under the same conditions. The influence of the duplex microstructure on attack development and morphology is analyzed. The electrochemical parameters obtained from the polarization curves suggest 2001 could replace 304 keeping the structure its corrosion performance (and with clear economical advantages). 2304 shows better corrosion behaviour than the more expensive 304, but somewhat lower than the excellent behaviour shown by 2205.  相似文献   

15.
碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
应用电化学阻抗谱、循环伏安与动电位极化等方法研究了碳化后模拟混凝土孔溶液pH值的变化对钢筋腐蚀电化学行为的影响.结果表明,随着pH值的下降钢筋表面钝化膜的稳定性与耐蚀性不同程度地降低.当模拟液pH值为12.5与11.5时,钝化膜的稳定性处于因pH值降低导致的钝化膜溶解与表面沉积物CaCO3或含钙氧化物CaFe2O4等耐...  相似文献   

16.
The life of a concrete structure exposed to deicing compounds or seawater is often been limited by chloride induced corrosion of the steel reinforcement. A complete assessment of the potential benefits afforded by new candidate rebar alloys must address both the lateral and radial corrosion propagation behavior in comparison to conventional steel as well as other factors that might affect the risk of corrosion‐induced concrete cracking. The radial (depth) and lateral (length) corrosion propagation behavior of 18% Cr + 2.8% Mo (S31653) stainless steel, 21% Cr (S32101) duplex stainless steel, and 9% Cr steel compared to plain ASTM A615 carbon steel were characterized in saturated Ca(OH)2 solution. Radial pit growth was found to be Ohmically controlled for all materials but repassivation occurred more readily at high applied potentials for 18% Cr + 2.8% Mo and 21% Cr stainless steels. Conversely, pit growth on plain steel propagated at all applied anodic potentials and did not repassivate until deactivation by cathodic polarization. Stainless steel also showed the highest resistance to lateral corrosion propagation from an active site during microelectrode array testing. 21% Cr duplex stainless and 9% Cr steel showed similar radial propagation behavior and corrosion morphology, which was intermediate to that of plain steel and S31653 stainless steel. Based on an existing concrete cracking model, it is expected that 9–21% Cr and 18% Cr + 2.8% Mo corrosion resistant rebar materials would require a greater depth of corrosion attack than carbon steel before damaging concrete via corrosion product formation.  相似文献   

17.
The corrosion susceptibility of as-received reinforcing steel bars (rebars) in solutions simulating the pore liquid of alkaline and carbonated concrete has been studied by means of potentiodynamic polarisation tests and polarisation resistance measurements. The effect of different degrees of carbonation and the presence of several chloride contents in the simulated pore solutions was investigated. Results show the beneficial effect of high alkalinity on the localised corrosion of steel caused by chloride ions. From the results of the potentiodynamic tests a critical chloride concentration above which pitting could take place was evaluated for each solution. The chloride threshold values here found are of the same order than those previously reported in the literature for film-free steel. The results obtained in solutions simulating carbonated concrete showed that under weak carbonation conditions carbon steel does not passivate while in the presence of high levels of carbonate and bicarbonate the resistance to localised corrosion is improved.  相似文献   

18.
Electrochemical injection of organic corrosion inhibitors into concrete   总被引:3,自引:0,他引:3  
Two organic bases (ethanolamine and guanidine) that are known to act as corrosion inhibitors for steel in aqueous media were introduced into saturated specimens of carbonated and non-carbonated concrete from external electrolytes under the influence of an electrical field applied between embedded steel cathodes and external anodes. The cathodic current density was galvanostatically controlled at values in the range 1-5 A/m2 for periods of 3-14 days. Control experiments, in which the corrosion inhibitors were applied to similar saturated concrete surfaces from external electrolyte without current, were also conducted. After treatment, the specimens were sectioned and analysed to determine the concentration profiles of the corrosion inhibitors within the concrete. It was found that the efficiency of injection of both ethanolamine and guanidine under the applied field was far higher in carbonated concrete than in non-carbonated concrete and that, in the carbonated specimens, the inhibitors became concentrated near the embedded steel. In non-carbonated concrete, guanidine penetration was accelerated to a modest extent by the applied field but ethanolamine penetration was not significantly enhanced by the field. These findings were explicable in terms of the influence of the pH values of the pore solutions in the various specimens on the degrees of ionisation of the organic bases concerned and hence on their tendencies to migrate and neutralise cathodically-generated hydroxyl ions.  相似文献   

19.
应用4×4阵列丝束电极模拟研究了混凝土中钢筋的腐蚀。将混凝土试样浸泡在3%的NaCl溶液中,通过测量铁丝柬电极的自腐蚀电位,研究加入不同阻锈剂(NaNO2;NaNO2+NaECO3;NaNO2+苯胺)后对混凝土中钢筋腐蚀性的影响。实验结果表明:复合型阻锈剂(NaNO2+苯胺)对混凝土中钢筋的防腐效果最好。它不仅可以保护混凝土不受外界腐蚀性介质的影响,还能使钢筋在混凝土中处于良好的钝化状态,从而延长了钢筋混凝土的使用寿命。  相似文献   

20.
In this study, the effects of various formwork surfaces on the corrosion performance of reinforcing steel in concrete were examined. For this purpose, seven formwork surfaces from populus nigra, pinus silvestris, steel sheet, and four of plywoods were prepared. Three of the plywood formworks were covered with different geotextile liners and drainage channel and holes were drilled on their surfaces. One of the plywood formworks having no processes on its surface was for control. Reinforcing steels were first embedded in formworks and then the concrete was poured. The samples were exposed to corrosion in a way of settling them in 5% NaCl solution. We tested the corrosion potential and bonding strength of the samples. Later, the mass loss and tensile strength were measured on reinforcing bars that were pulled out from the concrete. The chloride content and pH values were also tested on concrete powders. The results indicated that drained‐lined formwork (F5 with TB50 + F613 geotextile liner) compared to steel sheet (F4 undrained and unlined) gave 16% lower corrosion and 68% higher bonding strength on reinforcing bars embedded samples, 73% lower mass loss and 4% higher tensile strength on reinforcing bars, and 70% lower chloride content and 4% higher pH on concrete powders. In addition, it was found that the corrosion strength of reinforcing steels in concrete could be increased if drained‐lined formworks were utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号