首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of exogenous fatty acids bound to L-FABP into nuclei was studied. Rat liver cell nuclei and nuclear matrices (membrane depleted nuclei) were incubated in vitro with [1-(14)C]18:0 and 20:4n-6 either free or bound to L-FABP, ATP and CoA. FA esterification in whole nuclei and endonuclear lipids was ATP-CoA-dependent, and with specificity regarding fatty acid type and lipid class. 18:0 and 20:4n-6, free or L-FABP bound, showed the same incorporation and esterification pattern in lipids of whole nuclei. Only 20:4n-6 L-FABP bound was less incorporated into TAG with respect to free 20:4n-6. In the nuclear matrix, 18:0 free or L-FABP bound was esterified with a higher specific activity (SA) into: PtdEtn > PtdIns, PtdSer > PtdCho. 20:4n-6 free or L-FABP bound was esterified into: PtdIns > PtdEtn > PtdCho. 20:4n-6:L-FABP was esterified in endonuclear total-PL and PtdIns with a greater SA with respect to free 20:4n-6 and with a minor one as FFA. To summarize, trafficking of FA to nuclei includes esterification of 18:0 and 20:4n-6 either free or L-FABP-bound, into nuclear and endonuclear lipids by an ATP-CoA-dependent pathway. Endonuclear fatty acid esterification was more active than that in whole nuclei, and independent of the nuclear membrane. Esterification patterns of fatty acids L-FABP-bound or free into whole nuclear lipids were the same whereas in the nuclear matrix, L-FABP could play an important role in the mobilization of 20:4n-6 into specific sites of utilization such as the PtdIns pools.  相似文献   

2.
The aim of the present work was to study the effect of season on phospholipids and triacylglycerols (TAG) of mantle and tentacles of female and male wild Sepia officinalis. The identified phospholipids were phosphatidylethanolamine (PtdEtn), phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns), and PtdEtn was the major fraction. Results showed apparent seasonal variation of phospholipid content, particularly with female samples. Fatty acid composition of phospholipid classes showed a differentiation much more in the proportions than in the diversity of fatty acids. Results showed that the major saturated fatty acids were 16:0 and 18:0, the major monounsaturated fatty acids were 18:1 and 20:l, and the major polyunsaturated fatty acids were docosahexaenoic acid (22:6n-3) (DHA) and eicosapentaenoic acid (20:5n-3) (EPA). The results relative to TAG demonstrated significant variations. Principal component analysis confirmed the seasonal and sexual effects. This study could be appropriate for the improvement of consistent monitoring of phospholipid and TAG accumulation in cephalopod, which might be important for both physiological studies and food industries.  相似文献   

3.
This study investigates the protective effect of N‐stearoylethanolamine (NSE), a bioactive N‐acylethanolamine , on the lipid profile distribution in the pancreas of obesity‐induced insulin resistant (IR) rats fed with prolonged high fat diet (58 % of fat for 6 months). The phospholipid composition was determined using 2D thin‐layer chromatography. The level of individual phospholipids was estimated by measuring inorganic phosphorus content. The fatty acid (FA) composition and cholesterol level were investigated by gas–liquid chromatography. Compared to controls, plasma levels of triglycerides and insulin were significantly increased in IR rats. The pancreas lipid composition indicated a significant reduction of the free cholesterol level and some phospholipids such as phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) compared to controls. Moreover, the FA composition of pancreas showed a significant redistribution of the main FA (18:1n‐9, 18:2n‐6, 18:3n‐6 and 20:4n‐6) levels between phospholipid, free FA, triglyceride fractions under IR conditions that was accompanied by a change in the estimated activities of Δ9‐, Δ6‐, Δ5‐desaturase. Administration of N‐stearoylethanolamine (NSE, 50 mg/kg daily per os for 2 weeks) IR rats triggered an increase in the content of free cholesterol, PtdCho and normalization of PtdEtn, PtdSer level. Furthermore, the NSE modulated the activity of desaturases, thus influenced FA composition and restored the FA ratios in the lipid fractions. These NSE‐induced changes were associated with a normalization of plasma triglyceride content, considerable decrease of insulin and index HOMA‐IR level in rats under IR conditions.  相似文献   

4.
The membrane phospholipid composition in mammalian brain can be modified either by nutrients such as dietary fatty acids, or by certain toxic substances such as methylmercury (MeHg), leading to various biological and toxic effects. The present study evaluated the effects of eicosapentaenoic acid (EPA) and MeHg on the composition of the two most abundant membrane phospholipid classes, i.e., phosphatidylcholines (PtdCho) and phosphatidylethanolamines (PtdEtn), in mouse brain by using a two‐level factorial design. The intact membrane PtdCho and PtdEtn species were analyzed by liquid chromatography–mass spectrometry. The effects of EPA and MeHg on the PtdCho and PtdEtn composition were evaluated by principal component analysis and ANOVA. The results showed that EPA and MeHg had different effects on the composition of membrane PtdCho and PtdEtn species in brain, where EPA showed strongest impact. EPA led to large reductions in the levels of arachidonic acid (ARA)‐containing PtdCho and PtdEtn species in brain, while MeHg tended to elevate the levels of ARA‐containing PtdCho and PtdEtn species. EPA also significantly increased the levels of PtdCho and PtdEtn species with n‐3 fatty acids. Our results indicate that EPA may to some degree counteract the alterations of the PtdCho and PtdEtn pattern induced by MeHg, and thus alleviate the MeHg neurotoxicity in mouse brain through the inhibition of ARA‐derived pro‐inflammatory factors. These results may assist in the understanding of the interaction between MeHg, EPA and phospholipids, as well as the risk and benefits of a fish diet.  相似文献   

5.
A fast and efficient shotgun lipidomics strategy was applied to analyze phospholipids (PL) in the oyster Crassostrea plicatula, including 29 species of phosphatidylcholine (PtdCho), 23 species of phosphatidylethanolamine (PtdEtn), 11 species of phosphatidylserine (PtdSer), 6 species of phosphatidylinositol (PtdIns), and 17 species of lysophospholipids (Lyso-PL). During storage at 4 °C for 7 days, the PL content decreased by 68.08%, but a significant increase in the FFA content was observed (from 63.11 to 318.72 μg/g). PtdCho and PtdIns decreased relatively by 64.97 and 67.49%, and PtdSer decreased most markedly by 74.15%. However, the PtdEtn content increased slightly during the early stages of storage but subsequently began to decrease. Moreover, PL with eicosapentaenoic acid (EPA-PL) and docosahexaenoic acid (DHA-PL) decreased by 51.77 and 50.61%, whereas plasmalogens were relatively stable showing only a 25.46% decrease. In particular, through enzyme activity analysis of lipase, phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase D (PLD), it was observed that the activities of all these enzymes increased at the early stage at 4 °C, but their activities were at lower levels when the oysters were stored at ?20 °C. During the storage period at 4 °C, correlation analysis suggests that the degradation of PtdCho was mostly correlated to PLA2 (p < 0.05), whereas PtdEtn and PtdSer were more markedly correlated to lipase and PLD, respectively. The above result indicates that the hydrolysis mechanism of PL during seafood storage was correlated to the lipid hydrolytic enzyme activities under different storage temperatures.  相似文献   

6.
The composition of the molecular species of various phospholipid subclasses was examined in myelin isolated from brain of 15-, 21- and 90-day-old rats. The molecular species of diacylglycerophosphocholine (PtdCho), diacylglycerophosphoethanolamine (PtdEtn) and plasmenylethanolamine (PlsEtn) were quantified by high-performance liquid chromatography (HPLC) after phospholipase C treatment and dinitrobenzoyl derivatization. In rat brain myelin, each phospholipid subclass showed a specific pattern of molecular species that changed during development. PtdCho contained large amounts of saturated/monounsaturated and disaturated species and low amounts of saturated/polyunsaturated species. During brain development, the levels of saturated/monounsaturated molecular species increased whereas those of the disaturated and saturated/polyunsaturated species decreased. PtdEtn were characterized by their low levels of disaturated species and a high content of saturated/monounsaturated and saturated/polyunsaturated species, of which those containing fatty acids of the n−3 series decreased, whereas those containing fatty acids of the n−6 series did not change during brain development. The levels of saturated/monounsaturated species increased in PtdEtn. No disaturated molecular species could be detected in PlsEtn. This alkenylacyl subclass contained large amounts of saturated/polyunsaturated, saturated/monounsaturated and dimonounsaturated molecular species. During development, the levels of saturated/polyunsaturated molecular species decreased while those of the two others increased. The data indicated that myelin sheaths undergo phospholipid changes during brain development and maturation.  相似文献   

7.
The effects of egg conjugated linoleic acid (CLA) on chick yolk sac and liver phospholipid composition and molecular species were determined. Fertile eggs with no (control), low (CLA1) or high (CLA2) levels of CLA were incubated. Upon hatching, total lipid in the remnant yolk sac constituted 11.5, 18.9 and 15.3% in control, CLA1 and CLA2, respectively (p <0.05). Maternal CLA led to a decrease in phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) and an increase in lysophosphatidylcholine (LPtdCho) in the yolk sac and liver tissues of CLA1 and CLA2 when compared to control (p <0.05). The effect of maternal dietary CLA was very prominent in yolk sac PtdCho (34:1) where 13 and 38% reductions were observed in CLA1 and CLA2, respectively, when compared to control. Among different liver PtdCho species, the highest difference was found in 36:2, where a 41% increase was observed in CLA2 when compared with control chicks. The liver LPtdCho of CLA1 and CLA2 chicks had a 92% increase in 16:0 and 18:0 when compared to control. Over 80% increase was observed for 18:2 and 20:4 in the liver LPtdCho of CLA2 chicks compared to control. These results suggest that the yolk CLA content alters the proportions of phospholipids in the progeny during avian embryogenesis.  相似文献   

8.
Nonalcoholic fatty liver disease (NAFLD) is associated with an imbalance in fatty acid composition and can progress from simple steatosis to steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. Essential phospholipids (EPL), which contain high levels of 1,2-dilinoleoylphosphatidylcholine, can be used to treat NAFLD. Polyenylphosphatidylcholine (PPC) preparations are external, commercially available EPL products. The lipid composition of five commercially available PPC preparations, including Essentiale Forte, Fortifikat, Hepatoprotect Regenerator, Fortifikat Forte, and Esentin Forte were compared, the outcome of which may impact physician choice in the treatment of NAFLD. Following lipid extraction, a comparative analysis of key lipid content was performed using a QTRAP6500+ triple quadruple ion trap hybrid mass spectrometer (Sciex) in nanoelectrospray ionization mode. The glycerophospholipid composition of each PPC was determined, including levels of phosphatidylcholine (PtdCho), and phosphatidylethanolamine (PtdEtn) species, as well as PtdCho:PtdEtn ratio. Of the five preparations analyzed, Essentiale Forte contained the highest PtdCho levels (61.9 mol%) and lowest PtdEtn levels (4.9 mol%). PtdCho 36:4 levels, a polyunsaturated species of PtdCho, were highest in Esentin Forte (39.3 mol%) and Essentiale Forte (38.3 mol%) compared with other PPCs (28.7–35.8 mol%). Levels of lysophosphatidylcholine, phosphatidylinositol, phosphatidic acid, and phosphatidylglycerol were low in all five preparations. Lipid composition was consistent between the preparations. The high PtdCho:PtdEtn ratio composition of Essentiale Forte compared with the other PPC analyzed, as well as the presence of polyunsaturated fatty acids, suggest it could be the most clinically beneficial commercially available hepatoprotective product in the treatment of NAFLD.  相似文献   

9.
Kurvinen JP  Kuksis A  Sinclair AJ  Abedin L  Kallio H 《Lipids》2000,35(9):1001-1009
The changes in guinea pig brain (cerebrum) glycerophospholipid molecular species resulting from a low α-linolenic acid (ALA) diet are described. Two groups of six guinea pigs were raised from birth to 16 wk of age on either an n-3 deficient diet containing 0.01 g ALA/100 g diet or n-3 sufficient diet containing 0.71 g AlA/100 g diet. Molecular species of diradyl glycerophosphoethanolamine. (GroPEtn), glycerophosphocholine, glycerophosphoserine, and glycerophosphoinositol were analyzed by high-performance liquid chromatography with on-line electrospray ionization mass spectrometry (HPLC/ESI/MS). Alkenylacyl GroPEtn species were determined by comparing spectra before and after mild acid treatment while diacyl- and alkylacyl species were distinguished by HPLC/ ESI/MS. The proportions of phospholipid classes and of the diradyl GroPEtn subclasses were not altered by diet changes. The main polyunsaturated molecular species of diradyl GroPEtn subclasses and of phosphatidylcholine and phosphatidylserine (PtdSer) contained 16∶0, 18∶0, or 18∶1 in combination with docosahexaenoic acid (DHA, 22∶6n-3), docosapentaenoic (DPA, 22∶5n-6), or arachidonic acid (ARA, 20∶4n-6). A significant proportion of DPA containing species were present in both diet groups, but in n-3 fatty acid deficiency, the proportion of DPA increased and DHA was primarily replaced by DPA. The combined value of main DHA and DPA containing species in the n-3 deficient group ranged from 91-111% when compared with the n-3 sufficient group, indicating a nearly quantitative replacement. The n-3 fatty acid deficiency did not lower the content of ARA containing molecular species of PtdSer of the guinea pig brain as reported previously for the rat brain. The molecular species of phosphatidylinositol were not altered by n-3 fatty acid deficiency. The present data show that the main consequence of a low ALA diet is the preferential replacement of DHA-containing molecular species by DPA-containing molecular species in alkenylacyl- and diacyl GroPEtn and PtdSer of guinea pig brain.  相似文献   

10.
The lipid and fatty acid compositions in the various organs (muscle, liver, other viscera) and stomach contents of three common herbivorous fish species in Japan, Siganus fuscescens, Calotomus japonicus and Kyphosus bigibbus, were examined to explore the stable 20:4n-6 (arachidonic acid, ARA) sources. Triacylglycerol (TAG), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) were the dominant lipid classes, while the major FA contents were 16:0, 18:1n-9, 16:1n-7, 14:0, 18:0, 18:1n-7, and some PUFA, including ARA, 20:5n-3 (eicosapentaenoic acid, EPA), 22:5n-3 (docosapentaenoic acid, DPA), and 22:6n-3 (docosahexaenoic acid, DHA). The amounts of these fatty acids were varied among species and their lipid classes. Phospholipids contained higher levels of PUFA than TAG. However, ARA in both phospholipids and TAG was markedly present in the muscle and viscera of all specimens, particularly in C. japonicus and K. bigibbus. Moreover, their ARA levels were higher than the levels of DHA and EPA. The observed high ARA level is unusual in marine fish and might be characteristic of herbivorous fish. Furthermore, ARA was the dominant PUFA in the stomach contents of the three species, suggesting that the high ARA level originated from their food sources. The above indicates that these three herbivorous fishes are ARA-rich marine foods and have potential utilization as stable ARA resources.  相似文献   

11.
Recent results have suggested that plant lysophosphatidylcholine:acyl‐coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl‐coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiaeale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme.  相似文献   

12.
Lipid composition of liposomal bilayer should alter the cell response for permeability, transport, and uptake in small intestine. This work was done to investigate the transport and uptake of liposomes composed of docosahexaenoic acid-enriched phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), and sulfoquinovosyl diacylglycerol (SQDG) derived from marine products on multilamellar vesicles (MLV) in small intestinal epithelial cell models. The results showed that addition of PtdSer and SQDG as liposomal bilayer could improve the efficiency entrapment of liposomes. The liposomes containing PtdSer showed higher transport and uptake through both Caco-2 cell and M cell monolayers as compared to PtdCho-MLV. SQDG-containing liposomes exhibited only higher transport through M cell monolayer, while its uptake effect was higher both in Caco-2 cell and M cell monolayers. The results of experiments done with endocytosis inhibitors indicated that PtdCho-MLV must be transported via macropinocytosis and uptaken by phagocytosis in M cell monolayer model. PtdCho/PtdSer-MLV and PtdCho/SQDG-MLV might be transported and uptaken through M cell monolayer by phagocytosis. The result also indicated that PtdCho/SQDG-MLV could open the tight junction of small intestinal epithelial cell monolayers. Furthermore, our findings demonstrated that the surface status of cholesterol-containing liposomes were smooth, but they did not affect their transport and uptake through Caco-2 cell and M cell monolayers.  相似文献   

13.
Abnormal distribution of plasma fatty acids and increased inflammation are prominent features of metabolic syndrome. We tested whether these components of metabolic syndrome, like dyslipidemia and glycemia, are responsive to carbohydrate restriction. Overweight men and women with atherogenic dyslipidemia consumed ad libitum diets very low in carbohydrate (VLCKD) (1504 kcal:%CHO:fat:protein = 12:59:28) or low in fat (LFD) (1478 kcal:%CHO:fat:protein = 56:24:20) for 12 weeks. In comparison to the LFD, the VLCKD resulted in an increased proportion of serum total n-6 PUFA, mainly attributed to a marked increase in arachidonate (20:4n-6), while its biosynthetic metabolic intermediates were decreased. The n-6/n-3 and arachidonic/eicosapentaenoic acid ratio also increased sharply. Total saturated fatty acids and 16:1n-7 were consistently decreased following the VLCKD. Both diets significantly decreased the concentration of several serum inflammatory markers, but there was an overall greater anti-inflammatory effect associated with the VLCKD, as evidenced by greater decreases in TNF-α, IL-6, IL-8, MCP-1, E-selectin, I-CAM, and PAI-1. Increased 20:4n-6 and the ratios of 20:4n-6/20:5n-3 and n-6/n-3 are commonly viewed as pro-inflammatory, but unexpectedly were consistently inversely associated with responses in inflammatory proteins. In summary, a very low carbohydrate diet resulted in profound alterations in fatty acid composition and reduced inflammation compared to a low fat diet.  相似文献   

14.
The only known compositional change in the phospholipids (PL) of pulmonary surfactant in response to a physiologic stimulus occurs around the time of birth. In most species, the predominant anionic PL changes from phosphatidylinositol (PtdIns) to phosphatidylglycerol (PtdGro). Because prior studies have shown that the change in the headgroup itself is functionally insignificant, we tested the hypothesis that the PtdIns and PtdGro contain different diacyl pairs. Experiments used electrospray-ionization mass spectrometry to determine the molecular species in PtdIns, PtdGro, and phosphatidylcholine (PtdCho) in surfactant from newborn calves and cows. The profiles for the two anionic PL were distinct. The PtdIns contained long, unsaturated fatty acid chains and no disaturated species. The PtdGro more closely resembled the profile from PtdCho. For each headgroup, the molecular species for calf and cow were similar. The differences between the two anionic PL indicate that the switch from PtdIns to PtdGro during maturation involves more than simple substitution of the headgroup, and suggest that the functional significance of the shift may reflect the different pool of diacyl pairs.  相似文献   

15.
Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration‐dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn‐2 position, generating the corresponding PUFA‐lyso PtdCho. This specificity for PUFA‐PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species.  相似文献   

16.
Zoltan Kiss  Karan S. Crilly 《Lipids》1991,26(10):777-780
Addition of adenosine triphosphate (ATP) to [14C]ethanolamine-prelabeled NIH 3T3 fibroblasts resulted in rapid formation of [14C]ethanolamine from the prelabeled cellular phosphatidylethanolamine (PtdEtn) pool. After 2-min exposure, 10 μM ATP had near maximal effects on PtdEtn hydrolysis. Several other nucleotides, including UTP, ITP, and the stable ATP analog adenosine 5′-O-(3-thiotriphosphate) (ATPγS), also had stimulatory effects on PtdEtn hydrolysis with a potency comparable to that observed with ATP. The same nucleotides which acted on PtdEtn hydrolysis also had similar stimulatory effects on the hydrolysis of phosphatidylcholine (PtdCho) in [14C]choline-labeled cells. In isolated membranes, Mg2+ greatly enhanced the stimulatory effects of ATP and ATPγS, but not of other nucleotides, on the hydrolysis of PtdEtn and PtdCho. Results indicate that in isolated membranes, both ATP and ATPγS stimulate phospholipid hydrolysis by two different mechanisms, but in intact cells only one of these mechanisms appears to be responsive to externally added nucleotides.  相似文献   

17.
The lipidomes of Clostridium fallax and Clostridium cadaveris were studied using thin-layer chromatography (TLC) and normal phase liquid chromatography/mass spectrometry (NPLC/MS). Both species contain diradylglycerol (DRG), monohexosyldiradylglycerol (MHDRG), monohexosyl monoacylglycerol (MHMAG), phosphatidylglycerol (PtdGro), and phosphatidylethanolamine (PtdEtn). DRG, MHDRG, PtdEtn, and PtdGro are present in both diacyl and alk-1-enyl acyl (plasmalogen) forms. Both species contain cardiolipin (Ptd2Gro), which is present in tetraacyl, monoalkenyl-triacyl, and dialkenyl-diacyl forms. Both species contain small amounts of phosphatidylcholine (PtdCho). The presence of octadecadienoic (18:2) acyl chains in some PtdCho species indicates that they arise from the medium because no 18:2 is seen in the other lipids and clostridia generally lack the capacity to synthesize polyunsaturated fatty acids. The major lipidomic differences between these two species are that C. fallax contains a glycerolacetal of plasmenylethanolamine while C. cadaveris contains an ethanolamine-phosphate-modified diacylglycerol. The significance of these lipid compositions is discussed.  相似文献   

18.
19.
Brenner RR  Ayala S  Garda HA 《Lipids》2001,36(12):1337-1345
Dexamethasone depresses Δ6 and Δ5 and increases Δ9 desaturase and synthase activities. Therefore, we investigated the effect on the fatty acid composition of microsomal liver lipids and phosphatidylcholine (PtdCho) molecular species. After 15 d of treatment we found a notable decrease in arachidonic acid, a small decrease in stearic acid, and increases of linoleic, oleic, palmitoleic, and palmitic acids in liver microsomal total lipids and PtdCho. The study of the distribution of the PtdCho molecular species indicated that 18∶0/20∶4n−6, 16∶0/20∶4n−6, and 16∶0/18∶2n−6 predominated in the control animals. Dexamethasone, as expected because of its depressing effect on arachidonic acid synthesis and activation of oleic and palmitic acid synthesis, evoked a very significant decrease in 18∶0/20∶4n−6 PtdCho (P<0.001) and an important increase in 16∶0/18∶2n−6. The invariability of 16∶0/20∶4n−6 PtdCho could be related to the antagonistic effect of arachidonic and palmitic acid synthesis. PtdCho species containing oleic acid were not significant. The bulk fluidity and dynamic properties of the microsomal lipid bilayer measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene and 4-trimethylammonium-phenyl-6-phenyl-1,3,5-hexatriene showed no significant modification, probably owing to a compensatory effect of the different molecular species, but changes of particular domains not detected by this technique are possible. However, the extremely sensitive Laurdan detected increased lipid packing in the less-fluid domains of the polar-nonpolar interphase of the bilayer, possibly evoked by the change of molecular species and cholesterol/phospholipid ratio. The most important effect found is the decrease of arachidonic acid pools in liver phospholipids as one of the corresponding causes of dexamethasone-dependent pharmacological effects.  相似文献   

20.
Free radical damage is considered a determinant factor in the rate of aging. Unsaturated fatty acids are the tissue macromolecules that are most sensitive to oxidative damage. Therefore, the presence of low proportions of fatty acid unsaturation is expected in the tissues of long-lived animals. Accordingly, the fatty acid compositions of the major liver mitochondrial phospholipid classes from eight mammals, ranging in maximum life span potential (MLSP) from 3.5 to 46 yr, show that the total number of double bonds is inversely correlated with MLSP in both phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) (r = 0.757, P < 0.03, and r = 0.862, P < 0.006, respectively), but not in cardiolipin (P = 0.323). This is due not to a low content of unsaturated fatty acids in long-lived animals, but mainly to a redistribution between kinds of fatty acids on PtdCho and PtdEtn, shifting from arachidonic (r = 0.911, P < 0.002, and r = 0.681, P = 0.05, respectively), docosahexaenoic (r = 0.931 and r = 0.965, P < 0.0001, respectively) and palmitic (r = 0.944 and r = 0.974, P < 0.0001, respectively) acids to linoleic acid (r = 0.942, P < 0.0001, for PtdCho; and r = 0.957, P < 0.0001, for PtdEtn). For cardiolipin, only arachidonic acid showed a significantly inverse correlation with MLSP (r = 0.904, P < 0.002). This pattern strongly suggests the presence of a species-specific desaturation pathway and deacylation-reacylation cycle in determining the mitochondrial membrane composition, maintaining a low degree of fatty acid unsaturation in long-lived animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号