首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toughening modification of poly(l -lactide) (PLLA) with rubber particles is often realized at the cost of transparency, mechanical strength, and modulus because high rubber loadings are generally required for toughening. In this work, a promising strategy to simultaneously improve the transparency and stiffness–toughness performance of poly(butyl acrylate)-poly(methyl methacrylate) (BAMMA) core-shell rubber nanoparticles toughened PLLA blends by utilizing the stereocomplex (SC) crystallization between PLLA and poly(d -lactide) (PDLA) is devised. The results reveal that the construction of SC crystallites in PLLA matrix via melt-mixing PLLA/BAMMA blends with PDLA can prevent BAMMA nanoparticles from aggregation and promote them to form network-like structure at lower contents. As a result, not only higher toughening efficiency with less rubber contents but also superior transparency is achieved in the PLLA/PDLA/BAMMA blends as compared with the PLLA/BAMMA ones where large aggregated BAMMA clusters are formed. Moreover, the outstanding reinforcement of SC crystallites network for PLLA can impart an enhanced tensile strength and modulus to PLLA/PDLA/BAMMA blends, thus improving the stiffness–toughness performance of PLLA/PDLA/BAMMA blends to a higher degree. This work demonstrates that SC crystallization is a promising solution to solve the contradiction between transparency and mechanical properties and then obtain superior comprehensive performances in rubber toughened PLLA blends.  相似文献   

2.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

3.
Asymmetric poly(L-lactide)/poly(D-Lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA into the PLLA matrix with the formation of stereocomplex crystallites (sc-crystallites). Rheological results indicated that the PLLA/PDLA melt at lower temperatures (<Tm,sc, the melting temperature of the formed stereocomplex crystallites) underwent the transition from liquid-like to solid-like viscoelastic behaviors with increasing of the PDLA concentration, which was related to the sc-crystallites reserved in the melt of asymmetric PLLA/PDLA blends. Dissolution experiment indicated the presence of sc-crystallites network structure in the PLLA/PDLA blends, and the size of the sc-crystallite junction particles network increased with increasing of the PDLA concentration. DSC and POM studies indicated that the PDLA concentration and the thermal treatment temperature had a significant influence on the PLLA crystallizability behavior. At low thermal treatment temperature (<T m,sc ), reserved sc-crystallites showed an obvious promoting effect for PLLA crystallization. With increasing of the thermal treatment temperature, its promoting effect decreased due to melting of the sc-crystallites. This result suggests the sc-crystallites played two roles: nucleation sites and cross-linking points, and the two roles had a competitive relationship with change of the thermal treatment temperature and the PDLA concentration.  相似文献   

4.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

5.
Stereocomplex‐type poly(lactic acid)‐ [PLA]‐ based blends were prepared by solution casting of equimolar PLLA/PDLA with different amounts of organo‐modified montmorillonite. The homocrystallization and stereocomplexation of PLAs were enhanced by annealing of the blends. The stereocomplexation of PLAs, intercalation of the polymer chains between the silicates layers, and morphological structure of the filled PLAs were analyzed by wide‐angle X‐ray diffraction and transmission electron microscope. Thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), and tensile test were performed to study the thermal and mechanical properties of the blends. The homo‐ and stereocomplex crystallization of neat PLLA/PDLA were enhanced by annealing. The effect of annealing on the crystallization was emphasized by the addition of clay. With this structural change, thermal stabilities properties were also improved by the addition of clay. The silicate layers of the clay were slightly stacked but intercalated and distributed in the PLA‐matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Stereocomplex formation between poly(l ‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) in the melt state was investigated and altered via the addition of multi‐branched poly(d ‐lactide) (PDLA) additives. Two different multi‐branched PDLA additives, a 3‐arm and 4‐arm star‐shaped polymeric structure, were synthesized as potential heat resistance modifiers and incorporated into PLLA at 5, 10, and 20 (w/w) through melt blending. Mechanical and thermomechanical properties of these blends were compared with linear poly(l ‐lactide) (PLLA) as well as with blends formed by the addition of two linear PDLA analogs that had similar molecular weights to their branched counterparts. Blends with linear PDLA additives exhibited two distinct melting peaks at 170–180°C and 200–250°C which implied that two distinct crystalline domains were present, that of the homopolymer and that of the stereocomplex, the more stable crystalline structure formed by the co‐crystallization of both d ‐ and l ‐lactide enantiomers. In contrast, blends of PLLA with multi‐branched PDLA formed a single broad melting peak indicative of mainly formation of the stereocomplex, behavior which was confirmed by X‐ray diffraction (XRD) analysis. The heat deflection temperature determined by thermal mechanical analysis was improved for all blends compared to neat PLLA, with increases of up to180°C for 20% addition of the 3‐arm PLLA additive. Rheological properties of the blends, as characterized by complex viscosity (η*), remained stable over a wide temperature range. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42858.  相似文献   

7.
Masayuki Hirata 《Polymer》2008,49(11):2656-2661
Stereoblock poly(lactic acids) (sb-PLAs), having abundant enantiomeric compositions of poly(l-lactic acid) (PLLA), were successfully synthesized by solid-state polycondensation (SSP) of the melt blends of medium molecular weight prepolymers: both PLLA and poly(d-lactic acid) (PDLA) that had primarily been prepared by melt-polycondensation. The molecular weight of the resultant PLLA-rich sb-PLA was effectively enhanced by the dehydrative coupling of abundant PLLA molecules followed by the increase in homo-chiral crystallinity. These sb-PLA were successfully fabricated into polymer films by solution casting to analyze their crystalline morphology and properties. Both DSC and WAXS revealed preferential stereocomplexation in spite of concomitant homo-chiral crystallization for these sb-PLA. Particularly, exclusive sc crystallization was observed with melt-quenched sb-PLA represented whose PDLA ratio was above 15%. Therefore, the stereoblock structure can suppress the homo-chiral crystallization and increase the sc crystallinity even with the non-equivalent PLLA/PDLA compositions. Their thermal resistivity up to 200 °C was supported by the dynamic mechanical analysis of the sb-PLA films.  相似文献   

8.
High-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) are blended at different ratios and their crystallization behavior was investigated. Solely homo-crystallites mixtures of PLLA and PDLA were synchronously and separately formed during isothermal crystallization in the temperature (Tc) range of 90–130 °C, irrespective of blending ratio, whereas in addition to homo-crystallites, stereocomplex crystallites were formed in the equimolar blends at Tc above 150 and 160 °C. Interestingly, in isothermal crystallization at Tc = 130 °C, the spherulite morphology of blends became disordered, the periodical extinction (periodical twisting of lamellae) in spherulites disappeared, and the radial growth rate of spherulite (G) of the blends was reduced by the synchronous and separate crystallization of PLLA and PDLA and the coexistence of PLLA and PDLA homo-crystallites. However, the interplane distance (d), the crystallinity (Xc), the transition crystallization temperature (Tc) from α′-form to α-form, the alternately stacked structure of the crystalline and amorphous layers, and the nucleation mechanism were not altered by the synchronous and separate crystallization of PLLA and PDLA and the coexistence of PLLA and PDLA homo-crystallites. The unchanged d, Xc, transition Tc, long period of stacked lamellae, and nucleation mechanism strongly suggest that the chiral selection of PLLA or PDLA segments on the growth sites of PLLA or PDLA homo-crystallites to some extent was performed during solvent evaporation and this effect remained even after melting.  相似文献   

9.
Poly(l ‐lactic acid) (PLLA) was blended with a series of four‐armed poly(? ‐caprolactone)‐block ‐poly(d ‐lactic acid) (4a‐PCL‐b ‐PDLA) copolymers in order to improve its crystallization rate and mechanical properties. It is found that a higher content of 4a‐PCL‐b ‐PDLA copolymer or longer PDLA block in the copolymer lead to faster crystallization of the blend, which is attributed to the formation of stereocomplex crystallites between PLLA matrix and PDLA blocks of the 4a‐PCL‐b ‐PDLA copolymers. Meanwhile, the PDLA block can improve the miscibility between flexible PCL phase and PLLA phase, which is beneficial for improving mechanical properties. The tensile results indicate that the 10% 4a‐PCL5kb ‐PDLA5k/PLLA blend has the largest elongation at break of about 72% because of the synergistic effects of stereocomplexation between enantiomeric PLAs, multi‐arm structure and plasticization of PCL blocks. It is concluded that well‐controlled composition and content of 4a‐PCL‐b ‐PDLA copolymer in PLLA blends can significantly improve the crystallization rate and mechanical properties of the PLLA matrix. © 2017 Society of Chemical Industry  相似文献   

10.
Effect of the addition of poly(D-lactic acid) (PDLA) as stereocomplex (SC) on crystallization behavior of poly(L-lactic acid) (PLLA) had been systemically investigated. The result indicated that the inclusion of PDLA with higher MW into PLLA exhibited lower t 1/2 and showed accelerated crystallization behavior. Meanwhile, SC formed in blends with higher MW of PDLA exhibited enhanced nucleation activity. In combination with both DSC and WAXD analysis, it was believed that nucleation process was more related to the crystalline size of SC. The result in this study would provide guidance for the application of SC as nucleating agent for the PLA-based products.  相似文献   

11.
Yong He  Ying Xu  Zhongyong Fan 《Polymer》2008,49(26):5670-5675
A unique crystallization behavior of poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) stereocomplex was observed when a PLLA/PDLA blend (50/50) was subjected to specific melting conditions. PLLA and PDLA were synthesized by ring opening polymerization of l- or d-lactide using zinc lactate as catalyst. PLLA/PDLA blend was prepared through solution mixing followed by vacuum drying. The blend was melted under various melting conditions and subsequent crystallization behaviors were analyzed by using DSC, XRD, NMR and ESEM. Stereocomplex was exclusively formed from the 50/50 blend of PLLA and PDLA with relatively low molecular weights. Surprisingly, stereocomplex crystallization was distinctly depressed when higher melting temperature and longer melting period were applied, in contrast to homopolymer crystallization. Considering predominant interactions between PLLA and PDLA chains, a novel model of melting process is proposed to illustrate this behavior. It is assumed that PLLA and PDLA chain couples would preserve their interactions (melt memory) when the stereocomplex crystal melts smoothly, thus resulting in a heterogeneous melt which can easily crystallize. The melt could gradually become homogeneous at higher temperature or longer melting time. The strong interactions between PLLA and PDLA chain segments are randomly distributed in a homogeneous melt, thus preventing subsequent stereocomplex crystallization. However, the homogeneous melt can recover its ability to crystallize via dissolution in a solvent.  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) filled poly(l-lactic acid) (PLLA) and PLLA/poly(d-lactic acid) (PDLA) composites were prepared through a directly melt mixing process. A special crystalline structure of stereocomplex was formed by PLLA and PDLA, which was easily found when mixing two polymers with identical chemical composition but different steric structures. The electrical conductivities were greatly improved by the formation of stereocomplex compared to that of PLLA/MWCNT composites at same MWCNT content. The percolation threshold of the PLLA/PDLA/MWCNT composite at a PLLA/PDLA weight ratio of 50/50 was 0.35 wt%, while being 1.43 wt% of PLLA/MWCNT composites. The X-ray diffraction, non-isothermal and isothermal crystallization results showed that the formation of stereocomplex greatly increased the crystallinity of the composites, meanwhile MWCNTs acted as heterogeneous nucleating agent, which significantly accelerated the nucleation and spherulite growth. Therefore, the PLLA/PDLA/MWCNT composites have a very low percolation threshold due to the volume exclusion effect.  相似文献   

13.
Homo-crystallization and melting behavior of poly(L-lactic acid) (PLLA) with poly(D-lactic acid) (PDLA) (≤10 wt.%) was studied. The different thermal history had been applied to exert structural variation on stereocomplex (SC). The PLLA/PDLA blend showed different crystallization and melting behavior when cooled from 250°C or 200°C. Double melting peaks were observed after the blend was cooled from 250°C. SC annealing at different temperatures exhibited significant effect for melt-crystallization of PLLA. Influence of initial melting condition before cooling was also investigated. The cold crystallization of amorphous blend initially was studied and some novel results had been observed.  相似文献   

14.
The non-isothermally and isothermally crystallized stereodiblock copolymers of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with equimolar l-lactyl and d-lactyl units and different number-average molecular weights (Mn) of 3.9 × 103, 9.3 × 103, and 1.1 × 104 g mol−1, which are abbreviated as PLLA-b-PDLA copolymers, contained only stereocomplex crystallites as crystalline species, causing higher melting temperatures of the PLLA-b-PDLA copolymers compared to those of PLLA homopolymers. In the case of non-isothermal crystallization, the cold crystallization temperatures of the PLLA-b-PDLA copolymers during heating and cooling were respectively lower and higher than those of PLLA homopolymers, indicating accelerated crystallization of PLLA-b-PDLA copolymers. In the case of isothermal crystallization, in the crystallizable temperature range, the crystallinity (Xc) values of the PLLA-b-PDLA copolymers were lower than those of the PLLA homopolymers, and were susceptible to the effect of crystallization temperature in contrast to that of homopolymers. The radial growth rate of the spherulites (G) of the PLLA-b-PDLA copolymers was the highest at the middle Mn of 9.3 × 103 g mol−1. This trend is different from that of the PLLA homopolymers where the G values increased monotonically with a decrease in Mn, but seems to be caused by the upper critical Mn values of PLLA and PDLA chains as in the case of PLLA/PDLA blends (in other papers), above which homo-crystallites are formed in addition to stereocomplex crystallites. The disturbed crystallization of PLLA-b-PDLA copolymers compared to that of the PLLA/PDLA blend is attributable to the segmental connection between the PLLA and PDLA chains, which interrupted the free movement of those chains of the PLLA-b-PDLA copolymers during crystallization. The crystallite growth mechanism of the PLLA-b-PDLA copolymers was different from that of the PLLA/PDLA blend.  相似文献   

15.
A method to overcome the brittleness of poly (l-lactic acid) (PLLA) by kinetically trapping a continuous low Tg amorphous phase is presented. This morphology is accomplished by exploiting the significant difference in the crystallization temperatures of PLLA vs its stereocomplex with the poly (d-lactic acid) (PDLA) isomer. In our studies, the D isomer is the end block of a triblock copolymer with a configuration of the form PDLAn–Soft Blockm–PDLAn. As demonstrated in this study, when blended with PLLA, the obtained morphology, and improvement in the sample toughness and flexibility, strongly depend on the miscibility of the midblock in the triblock copolymer with the matrix PLLA. The difference in the chemical nature of the midblock clearly affected the stereocomplex crystallization between the PDLA end blocks, the PLLA matrix polymer, and the morphology formed. It is found that the miscible midblock gives rise to a soft continuous amorphous phase while in the case of an immiscible midblock, a glassy phase separated amorphous phase is formed. Dramatically different physical properties can be obtained for various PLLA/triblock copolymer blends giving access to tough, yet flexible, semicrystalline PLLA blends.  相似文献   

16.
Linear poly(d ‐lactide) (PDLA) with various molecular weights is synthesized and incorporated into commercial poly(l ‐lactide) (PLLA) with different optical purities. And then, the crystallization, mechanical and thermal properties of the PLLA and PLLA/PDLA cast films are investigated. In the PLLA and PDLA/PLLA specimens with lower optical purity, few homochiral crystallites (HC) form in all the specimens and only a small amount of PLA stereocomplex crystallites (SC) are observed in the blends. The elongation at break of all the specimens is extraordinary high, >300%. Dynamic mechanical analyses indicate that the destruction temperature increases at first, and then depresses as enlarging the molecular weight of PDLA in these blends. For the PLLA and PLLA/PDLA with higher optical purity, more content of HC develops in neat PLLA, and both SC and HC produce in the PLLA/PDLA specimens. However, the strains of neat specimens and binary blends are much lower than that of specimens with lower optical purity. The specimens with higher optical purity exhibit higher destruction temperatures and lower loss factors. The high content of crystals (SC and HC) would act as the physical cross‐linking points and provide a key factor to impede the deformation of neat PLLA and binary blends during stretching, which should result in the fragile behavior of the PLLA and PLLA/PDLA blends with higher optical purity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44730.  相似文献   

17.
Stereo multiblock poly(lactic acid)s (PLA)s and stereo diblock poly(lactic acid) (DB) with a wide variety of block length of 15.4–61.9 lactyl units are synthesized, and the effects of block length sequence on crystallization and spherulite growth behavior are investigated at different crystallization temperatures, in comparison with neat poly(L ‐lactide) (PLLA), poly(D ‐lactide) (PDLA), and PLLA/PDLA blend. Only stereocomplex crystallites as crystalline species are formed in the stereo multiblock PLAs and DB, irrespective of block length and crystallization temperature. The maximum crystallinities (33–61%), maximum radial growth rate of spherulites (0.7–56.7 μm min?1), and equilibrium melting temperatures (182.0–216.5°C) increased with increasing block length but are less than those of PLLA/PDLA blend (67 %, 122.5 μm min?1, and 246.0°C). The spherulite growth rates and overall crystallization rates of the stereo multiblock PLAs and DB increased with increasing block length and are lower than that of PLLA/PDLA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The effect of xylan propionate (XylPr) as a novel biomass‐derived nucleating agent on the poly(lactide) sterecomplex was investigated. Addition of XylPr to an enantiomeric blend of poly(l ‐lactide) (PLLA) and poly(d ‐lactide) (PDLA) was performed in either the solution state or molten state. The solution blend of PLLA/PDLA with XylPr was prepared by mixing equal volumes of 1 wt% XylPr/PLLA and 1 wt% XylPr/PDLA solutions in chloroform and precipitating in methanol. The solution blend with XylPr showed shorter half‐time crystallization than the solution blend without XylPr in isothermal crystallization between 80 and 140 °C, although homocrystallization occurred. Enhanced stereocomplex crystallization in the solution blend with XylPr was observed at 180 °C, where no crystallization occurred in the solution blend without XylPr. Addition of XylPr to PLLA/PDLA blend in the molten state was performed at 240 °C. Thereafter, the melt blend of PLLA/PDLA with or without XylPr was either quenched in iced water or isothermally crystallized directly from the melt. Isothermal crystallization of the melt‐quenched blend with XylPr gave a similar result to the solution blend with XylPr. In contrast, the melt‐crystallized blend with XylPr formed only stereocomplex crystals after crystallization above 140 °C. Furthermore, the melt‐crystallized blend with XylPr showed a higher crystallinity index and melting temperature than the melt‐crystallized blend without XylPr. This shows that XylPr promotes stereocomplex crystallization only when the blend of PLLA/PDLA with XylPr is directly crystallized from the molten state just after blending. © 2016 Society of Chemical Industry  相似文献   

19.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
The enhancement of mechanical properties were achieved by solution blending of poly(d ‐lactide) (PDLA) and 5‐arm poly(l ‐lactide) (5‐arm PLLA). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated almost complete stereocomplex could be obtained when 5‐arm PLLA exceeded 30wt %. Tensile test results showed that the addition of 5‐arm PLLA in linear PDLA gave dramatically improvement both on tensile strength and elongation at break, which generally could not be increased simultaneously. Furthermore, this work transformed PDLA from brittle polymer into tough and flexible materials. The mechanism was proposed based on the TEM results: the stereocomplex crystallites formed during solvent evaporation on the blends were small enough (100–200 nm), which played the role of physical crosslinking points and increased the interaction strength between PDLA and 5‐arm PLLA molecules, giving the blends high tensile strength and elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42857.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号