首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
The miscoding properties of the model estrogen-derived DNA adducts, N2-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'-deoxyguanosine (dG-N2-3MeE) and N6-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'- deoxyadenosine (dA-N6-3MeE), have been explored, using an in vitro experimental system to quantify base substitutions and deletions. Site-specifically modified oligodeoxynucleotides containing a single dG-N2-3MeE or dA-N6-3MeE were prepared postsynthetically and used as templates in primer extension reactions catalyzed by Escherichia coli and mammalian DNA polymerases. When the 3'-->5' exonuclease free (exo-) Klenow fragment of DNA polymerase I was used, dG-N2-3MeE promoted mostly one- and two-base deletions, along with small amounts of incorporation of dAMP, dGMP, and dCMP opposite the lesion. dA-N6-3MeE promoted the incorporation of dTMP opposite the lesion as well as two-base deletions, accompanied by the incorporation of dAMP. Using pol alpha, primer extension reactions were blocked at dG-N2-3MeE; however, dA-N6-3MeE promoted preferential incorporation of dTMP opposite the lesion with small amounts of incorporation of dCMP and deletions. Primer extension reactions catalyzed by pol delta were blocked at these lesions. When pol beta was used, dG-N2-3MeE produced small amounts of incorporation of dAMP and deletions. dA-N6-3MeE promoted preferential incorporation of dTMP, along with incorporation of dCMP and two-base deletions. The miscoding specificities and frequencies varied depending on the DNA polymerase used. These results indicate that estrogen-DNA adducts have miscoding potential.  相似文献   

2.
Xenopus laevis DNA polymerase gamma (pol gamma) exhibits low activity on a poly(dT)-oligo(dA) primer-template. We prepared a single-stranded phagemid template containing a dT41 sequence to test the ability of pol gamma to extend a primer through a defined oligo(dT) tract. pol gamma terminates in the center of this dT41 sequence. This replication arrest is abrogated by addition of single-stranded DNA-binding protein or by substitution of 7-deaza-dATP for dATP. These features are consistent with the formation of a T.A*T DNA triplex involving the primer stem. Replication arrest occurs under conditions that permit highly processive DNA synthesis by pol gamma. A similar replication arrest occurs for T7 DNA polymerase, which is also a highly processive DNA polymerase. These results suggest the possibility that DNA triplex formation can occur prior to dissociation of DNA polymerase. Primers with 3'-oligo(dA) termini annealed to a template with a longer oligo(dT) tract are not efficiently extended by pol gamma unless single-stranded DNA-binding protein is added. Thus, one of the functions of single-stranded DNA-binding protein in mtDNA maintenance may be to enable pol gamma to successfully replicate through dT-rich sequences.  相似文献   

3.
Calf thymus DNA polymerase epsilon readily uses short, synthetic oligonucleotides as substrates for both polymerase and exonuclease activity. These substrates were used to examine the mechanism of inhibition by aphidicolin. Aphidicolin competes with each of the four dNTPs for binding to a pol epsilon.DNA complex. Importantly, aphidicolin binds equally well regardless of the identity of the next template base to be replicated (Ki approximately 0.6 microM). Hydrolysis of synthetic templates of defined sequence by the 3'-->5' exonuclease was examined. pol epsilon preferred to hydrolyze single-stranded DNA 3-fold better than double-stranded DNA (Vmax/KM), while under Vmax conditions single-stranded DNA was hydrolyzed 100-fold faster than double-stranded DNA. Aphidicolin did not inhibit exonuclease activity on single-stranded DNA; however, activity on double-stranded DNA was partially inhibited. Formation of an E.[template.primer].aphidicolin ternary complex inhibits exonuclease activity. However, even under conditions where the polymerase site is completely blocked by a template-primer, the exonuclease retains significant activity.  相似文献   

4.
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

5.
A molecular dynamics simulation has been carried out with DNA polymerase beta (beta pol) complexed with a DNA primer-template. The templating guanine at the polymerase active site was covalently modified by the carcinogenic metabolite of benzo[a]pyrene, (+)-anti-benzo[a]pyrene diol epoxide, to form the major (+)-trans-anti-benzo[a]pyrene diol epoxide covalent adduct. Thus, the benzo[a]pyrenyl moiety (BP) is situated in the single-stranded template at the junction between double- and single-stranded DNA. The starting structure was based on the X-ray crystal structure of the rat beta pol primer-template and ddCTP complex [Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 264, 1891-1903]. During the simulation, the BP and its attached templating guanine rearrange to form a structure in which the BP is closer to parallel with the adjacent base pair. In addition, the templating attached guanine is displaced toward the major groove side and access to its Watson-Crick edge is partly obstructed. This structure is stabilized, in part, by new hydrogen bonds between the BP and beta pol Asn279 and Arg283. These residues are within hydrogen bonding distance to the incoming ddCTP and templating guanine, respectively, in the crystal structure of the beta pol ternary complex. Site-directed mutagenesis has confirmed their role in dNTP binding, discrimination, and catalytic efficiency [Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A., and Wilson, S. H. (1996) J. Biol. Chem. 271, 12141-12144]. The predominant biological effect of the BP is DNA polymerase blockage. Consistent with this biological effect, the computed structure suggests the possibility that the BP's main deleterious impact on DNA synthesis might result at least in part from its specific interactions with key polymerase side chains. Moreover, relatively modest movement of BP and its attached guanine, with some concomitant enzyme motion, is necessary to relieve the obstruction and permit the observed rare incorporation of a dATP opposite the guanine lesion.  相似文献   

6.
Intermediates in the replication of circular and linear M13 double-stranded DNA by bacteriophage T7 proteins have been examined by electron microscopy. Synthesis generated double-stranded DNA molecules containing a single replication fork with a linear duplex tail. A complex presumably consisting of T7 DNA polymerase and gene 4 helicase/primase molecules was present at the fork together with a variable amount of single-stranded DNA sequestered by gene 2.5 single-stranded DNA binding protein. Analysis of the length distribution of Okazaki fragments formed at different helicase/primase concentrations was consistent with coupling of leading and lagging strand replication. Fifteen to forty percent of the templates engaged in replication have a DNA loop at the replication fork. The loops are fully double-stranded with an average length of approximately 1 kilobase. Labeling with biotinylated dCTP showed that the loops consist of newly synthesized DNA, and synchronization experiments using a linear template with a G-less cassette demonstrated that the loops are formed by active displacement of the lagging strand. A long standing feature of models for coupled leading/lagging strand replication has been the presence of a DNA loop at the replication fork. This study provides the first direct demonstration of such loops.  相似文献   

7.
DNA polymerase beta (pol beta) is the most error prone of all known eukaryotic DNA polymerases tested in vitro. Here, we show that cells overexpressing pol beta cDNA have acquired a spontaneous mutator phenotype. By measuring the appearance of mutational events using three independent assays, we found that genetic instability increased in the cell lines that overexpressed pol beta. In addition, these cells displayed a decreased sensitivity to cancer chemotherapeutic, bifunctional, DNA-damaging agents such as cisplatin, melphalan, and mechlorethamine, resulting in enhanced mutagenesis compared with control cells. By using cell-free extracts and modified DNA substrates, we present data in support of error-prone translesion replication as one of the key determinants of tolerance phenotype. These results have implications for the potential role of pol beta overexpression in cancer predisposition and tumor progression during chemotherapy.  相似文献   

8.
DNA replication is an asymmetric process involving concurrent DNA synthesis on leading and lagging strands. Leading strand synthesis proceeds concomitantly with fork opening, whereas synthesis of the lagging strand essentially takes place on a single-stranded template. The effect of this duality on DNA damage processing by the cellular replication machinery was tested using eukaryotic cell extracts and model DNA substrates containing site-specific DNA adducts formed by the anticancer drug cisplatin or by the carcinogen N-2-acetylaminofluorene. Bypass of both lesions was observed only with fork-like substrates, whereas complete inhibition of DNA synthesis occurred on damaged single-stranded DNA substrates. These results suggest a role for additional accessory factors that permit DNA polymerases to bypass lesions when present in fork-like DNA.  相似文献   

9.
Three T4 DNA polymerase accessory proteins (44P/62P and 45P) stimulate the polymerase (pol) activity and the 3'-5' exonuclease (exo) activity of T4 DNA polymerase (43P) on long, double-stranded DNA substrates. The 44P/62P "clamp loader" facilitates the binding of 45P, the "sliding clamp", to DNA that is primed for replication. Using a series of truncated 43P mutants, we identified a region at the extreme carboxy terminus of the DNA polymerase that is required for its interaction with accessory proteins. Truncation mutants of 43P lacking the carboxy-terminal 3, 6, or 11 residues retained full pol and exo activity on short synthetic primer-templates. However, the ability of the accessory proteins to enhance these activities on long double-stranded DNA templates was drastically reduced, and the extent of the reduction in activity was greater as more residues were deleted. One of the truncation mutants (N881), which had 17 residues removed from the carboxy terminus, showed reduced binding affinity and diminished pol activity but enhanced exo activity upon incubation with a small primer-template. The exo activity of the N881 mutant, on short, single-stranded DNA was unchanged, however, compared to the wild-type enzyme. These results are consistent with inferences drawn from the crystal structure of a DNA polymerase from a related T-even phage, RB69, where the carboxy-terminal 12 residues (equivalent to the 11 residues of 43P from phage T4) protrude from the thumb domain and are free to interact with complementary surfaces of the accessory proteins. The structural integrity of the thumb region in the N881 mutant is probably perturbed and could account for its reduced binding affinity and pol activity when incubated with short, double-stranded DNA substrates.  相似文献   

10.
We have analyzed the mutational spectra produced during in vitro DNA synthesis by DNA polymerase alpha-primase and DNA polymerase beta. The polymerase mutation frequency as measured in the in vitro herpes simplex virus thymidine kinase (HSV-tk) forward assay was increased when reactions utilized single-stranded DNA templates randomly modified by 20 mM N-ethyl-N-nitrosourea (ENU), relative to solvent-treated templates. A 20- to 50-fold increase in the frequency of G-->A transition mutations was observed for both polymerases, as expected due to mispairing by O6-ethylguanine lesions. Strikingly, ENU treatment of the template also resulted in a five- to 12-fold increased frequency of frameshift errors at heteropolymeric (non-repetitive) template sequences produced by polymerase beta and polymerase alpha-primase, respectively. The increased proportion of frameshift mutations at heteropolymeric sequences relative to homopolymeric (repetitive) sequences produced by each polymerase in response to ENU damage was statistically significant. For polymerase alpha-primase, one-base deletion errors at template guanine residues was the second most frequent mutational event, observed at a frequency only four-fold lower than the G-->A transition frequency. In the polymerase beta reactions, the frequency of insertion errors at homopolymeric (repetitive) sequences was increased six-fold using alkylated templates, relative to solvent controls. The frequency of such insertion errors was only three-fold lower than the frequency of G-->A transition errors by polymerase beta. Although ENU is generally regarded as a potent base substitution mutagen, these data show that monofunctional alkylating agents are capable of inducing frameshift mutations in vitro. Alkylation-induced frameshift mutations occur in both repetitive and non-repetitive DNA sequences; however, the mutational specificity is dependent upon the DNA polymerase.  相似文献   

11.
The in vitro fidelity of Escherichia coli DNA polymerase III holoenzyme (HE) is characterized by an unusual propensity for generating (-1)-frameshift mutations. Here we have examined the capability of HE isolated from both a wild-type and a proofreading-impaired mutD5 strain to polymerize from M13mp2 DNA primer-templates containing a terminal T(template).C mismatch. These substrates contained either an A or a G as the next (5') template base. The assay allows distinction between: (i) direct extension of the terminal C (producing a base substitution), (ii) exonucleolytic removal of the C, or (iii), for the G-containing template, extension after misalignment of the C on the next template G (producing a (-1)-frameshift). On the A-containing substrate, both HEs did not extend the terminal C (<1%); instead, they exonucleolytically removed it (>99%). In contrast, on the G-containing substrate, the MutD5 HE yielded 61% (-1)-frameshifts and 6% base substitutions. The wild-type HE mostly excised the mispaired C from this substrate before extension (98%), but among the 2% mutants, (-1)-frameshifts exceeded base substitutions by 20 to 1. The preference of polymerase III HE for misalignment extension over direct mismatch extension provides a basis for explaining the in vitro (-1)-frameshift specificity of polymerase III HE.  相似文献   

12.
8-Methyl-2'-deoxyguanosine (8-MedG) was synthesized by reacting dG under the methyl radical generating system and incorporated into oligodeoxynucleotides using phosphoramidite techniques. The site-specifically modified oligodeoxynucleotide containing a single 8-MedG was then used as a template for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo-) Klenow fragment of Escherichia Coli DNA polymerase I and mammalian DNA polymerase alpha. Primer extension catalyzed by the exo- Klenow fragment readily passed the 8-MedG lesion in the template while that catalyzed by pol alpha was retarded opposite the lesion. The fully extended products formed during DNA synthesis were analyzed to quantify the miscoding specificities of 8-MedG. Both DNA polymerases incorporated primarily dCMP, the correct base opposite the lesion, along with small amounts of incorporation of dGMP and dAMP. In addition, two-base deletion was observed only when the exo- Klenow fragment was used. The thermodynamic stability of 8-MedG in the duplex was also studied. The duplex containing 8-MedG:dG was more thermally and thermodynamically stable than that of dG:dG. The duplex containing 8-MedG:dA was more thermodynamically stable than that of dG:dA. We conclude that 8-MedG is a miscoding lesion and capable of generating G --> C and G --> T transversions and deletion in cells.  相似文献   

13.
DNA polymerase beta (pol beta) is the smallest and least complex DNA polymerase. The structure of the enzyme is well understood, but little is known about its catalytic properties, particularly processivity and fidelity. Pre-steady-state analysis of the incorporation of a single nucleotide into a short 25/45 oligonucleotide primer-template by pol beta was used to define the kinetic parameters of the polymerase. In addition, nucleotide analogs and site-specific mutants, along with structural analyses, were used to probe the structure-function relationship of pol beta. Several significant findings have been obtained: (i) The catalysis by pol beta is processive and displays an initial burst under pre-steady-state conditions, but the processivity is poor compared to other polymerases. (ii) The fidelity of pol beta is also low relative to other polymerases. (iii) Under pre-steady-state conditions the chemical step appears to be only partially rate-limiting on the basis of the low thio effect (4.3), defined as kpol(dNTP)/kpol(dNTP alpha S). The thio effect increases to 9 for incorporation of an incorrect nucleotide. These results are consistent with the existence of a substrate-induced conformational change that is also partially rate-limiting. (iv) A comparison between the two-dimensional NMR spectra of the wild-type and mutant enzymes indicates that the mutations at position 283 did not significantly perturb the structure of the enzyme. The conformational stability of the mutants is also unperturbed. Thus, R283 is not important to the overall structure of the enzyme. (v) The results of kinetic analyses of R283A and R283K mutants indicate that the hydrogen bond between R283 of pol beta and the template is important for catalysis. Both R283A and R283K mutants displayed decreases in catalytic efficiency by a factor of ca. 200 relative to wild-type pol beta. The mutants are also less faithful by a factor of 2-4, in terms of the T-G mispair vs the T-A correct pair. The perturbation, however, could occur at both the implied conformational step and the chemical step, since the thio effects of the mutants for both correct and incorrect nucleotides are similar to those of WT pol beta.  相似文献   

14.
Ethylene oxide, a direct-acting mutagen and carcinogen, produces 3-hydroxyethyldeoxyuridine (3-HE-dU) after initial alkylation at N3 of dC, followed by rapid hydrolytic deamination. The significance of formation of 3-HE-dU in DNA was investigated by in vitro DNA replication of 3-HE-dU. A 55-nucleotide DNA template, containing 3-HE-dU at a single site, was constructed. DNA products, synthesized on the site-modified template, were analyzed and mutagenic bypass at 3-HE-dU estimated. The 3-HE-dU lesion blocked DNA replication by the Klenow fragment of Escherichia coli polymerase I (Kf Pol I) and bacteriophage T7 polymerase (T7 Pol) 3' to 3-HE-dU and after incorporating a nucleotide opposite 3-HE-dU. DNA synthesis past 3-HE-dU was negligible (< 3%). Substitution of Kf Pol I (exo-) and T7 Pol (exo-), polymerases lacking 3'-->5' exonuclease proofreading activity, for Kf Pol I and T7 Pol, respectively, facilitated DNA synthesis past 3-HE-dU. The bypass synthesis by Kf Pol I (exo-) was 60% and 90% by T7 Pol (exo-). These results suggest that the 3-HE-dU lesion could be bypassed, but that the extension at 3-HE-dU is rate-limiting. In the absence of proofreading, the nucleotide incorporated opposite 3-HE-dU is not excised and remains in position long enough for extension to occur. During post-lesion synthesis, both dA and dT were incorporated opposite 3-HE-dU. Since 3-HE-dU is derived from dC alkylation by ethylene oxide, incorporation of dA and dT opposite 3-HE-dU implicates this lesion in G.C-->A.T and G.C-->T.A mutagenesis.  相似文献   

15.
16.
A study of the inhibition of mouse cellular DNA polymerases by poly-nucleotides and their vinyl analogs is presented. Poly(dT)-directed poly(dA) synthesis by representatives of all three classes of cellular DNA polymerase could be completely inhibited by poly(9-vinyladenine), although higher concentrations were required in the case of the gamma class enzyme. Studies on the mechanism of the inhibition using the alpha class DNA polymerase and different templates showed that the enzyme activity was inhibited in all cases where base-pairing between the vinyl polymer and the template occurred; poly(9-vinyladenine) did not interfere with the replication of templates to which it does not bind. The inhibition occurred shortly after addition of poly(9-vinyladenine) to ongoing reactions, yet the enzyme was not displaced from the template - primer complex.  相似文献   

17.
18.
African swine fever virus (ASFV) encodes a novel DNA polymerase, constituted of only 174 amino acids, belonging to the polymerase (pol) X family of DNA polymerases. Biochemical analyses of the purified enzyme indicate that ASFV pol X is a monomeric DNA-directed DNA polymerase, highly distributive, lacking a proofreading 3'-5'-exonuclease, and with a poor discrimination against dideoxynucleotides. A multiple alignment of family X DNA polymerases, together with the extrapolation to the crystal structure of mammalian DNA polymerase beta (pol beta), showed the conservation in ASFV pol X of the most critical residues involved in DNA binding, nucleotide binding, and catalysis of the polymerization reaction. Therefore, the 20-kDa ASFV pol X most likely represents the minimal functional version of an evolutionarily conserved pol beta-type DNA polymerase core, constituted by only the "palm" and "thumb" subdomains. It is worth noting that such an "unfingered" DNA polymerase is able to handle templated DNA polymerization with a considerable high fidelity at the base discrimination level. Base excision repair is considered to be a cellular defense mechanism repairing modified bases in DNA. Interestingly, the fact that ASFV pol X is able to conduct filling of a single nucleotide gap points to a putative role in base excision repair during the ASFV life cycle.  相似文献   

19.
20.
Initiation of adenovirus DNA replication occurs by a jumping back mechanism in which the precursor terminal priming protein (pTP) forms a pTP.trinucleotide complex (pTP.CAT) catalyzed by the viral DNA polymerase (pol). This covalent complex subsequently jumps back 3 bases to permit the start of chain elongation. Before initiation, pTP and pol form a tight heterodimer. We investigated the fate of this pTP.pol complex during the various steps in replication. Employing in vitro initiation and elongation on both natural viral templates and synthetic oligonucleotides followed by glycerol gradient separation of the reaction products, we established that pTP and pol are separated during elongation. Whereas pTP.C and pTP. CA were still bound to the polymerase, after the formation of pTP. CAT 60% of the pTP.pol complex had dissociated. Dissociation coincides with a change in sensitivity to inhibitors and in Km for dNTPs, suggesting a conformational change in the polymerase, both in the active site and in the pTP interaction domain. In agreement with this, the polymerase becomes a more efficient enzyme after release of the pTP primer. We also investigated whether the synthesis of a pTP initiation intermediate is confined to three nucleotides. Employing synthetic oligonucleotide templates with a sequence repeat of two nucleotides (GAGAGAGA ... instead of the natural GTAGTA ... ) we show that G5 rather than G3 is used to start, leading to a pTP. tetranucleotide (CTCT) intermediate that subsequently jumps back. This indicates flexibility in the use of the start site with a preference for the synthesis of three or four nucleotides during initiation rather than two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号