首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrayed microrods are used to drill array of microholes in workpieces by Micro electrical discharge machining (μEDM). In comparison to a single microrod, the use of an array of microrods enables drilling of multiple microholes in lesser time, and hence it offers a higher productivity. The present work focuses on the effect of tool wear on the dimensions of the machined array of microrods through reverse micro electrical discharge machining (R-μEDM). The effects of the input parameters such as voltage, capacitance and feed rate on the obtained length and diameter of the microrods have been investigated. This study introduces a simple analytical model to evaluate the amount of tool wear and material removal from a bulk rod. As the levels of voltage and capacitance increase from lower to higher, the tool wear increases by 574%. At lower levels of voltage and capacitance, a straight array of microrods with a longer length of about 1.961?mm is obtained. On the other hand, at higher levels of voltage and capacitance, the obtained microrods are found to have a shorter length of 1.725?mm but with taper. Scanning electron microscope (SEM) and optical microscope images are also analyzed for describing the effects of tool wear on the shape and size of the fabricated microrods.  相似文献   

2.
Micro-electrical discharge machining (EDM) is a slow process as compared to laser machining, on the contrary laser machining lacks good surface quality. To overcome the drawbacks of both these processes, this paper suggests a hybrid machining process which combines laser and micro-EDM processes for drilling microholes in advanced engineering materials such as Nickel–Titanium (Ni–Ti)-based shape memory alloy. To achieve the objective of the suggested hybrid process, pilot holes are drilled with laser machine and rimmed out by micro-EDM drilling. The suggested process requires investigation of various combinations of micro-EDM drilling process conditions to obtain optimum machining parameters for the hybrid process. It has been found that the proposed hybrid machining process resulted in 50–65% reduction in machining time without affecting the quality of microholes as compared to the standard micro-EDM process.  相似文献   

3.
Microrods of poly(o-phenylenediamine) (PoPD) were synthesized by a templateless method using ferric chloride as an oxidant. The microrod morphologies of the resulting PoPD were confirmed by scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images. When the concentration of o-phenylenediamine (oPD) was 0.03 M, the microrods of PoPD had a diameter in the range of 0.5-2 μm and a length from 2 μm to 20 μm. It was found that the concentration of oPD monomer had much influence on the morphology of the obtained PoPD. When the concentration of oPD was lower than 0.03 M, long microrods could be observed. However, when the concentration of oPD monomer was higher than 0.12 M, the length of the microrods became very short and the diameter became bigger. Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectra and X-ray diffraction (XRD) were used to characterize the structure of the obtained PoPD microrods.  相似文献   

4.
The objective of this research is to investigate the feasibility of using Electrical-Discharge Machining (EDM) for carbon-carbon composite materials as well as the effects of major machining parameters. The material was machined by electrical-discharge sinker using copper electrode. The mechanism of material removal has been revealed by the morphology of debris. The material removal rate, the surface topography and the recast layer that remains on the workpiece surface were studied in terms of EDM processing variables (e.g., pulse current and pulse duration time). The machined surface showing resolidification was examined by Scanning Electron Microscopy (SEM). A qualitative energy dispersive spectroscopic analyzer was used to measure the amount of migrated alloy in the workpiece and the chemical composition of recast layer. The machining damage, the recast layer, and the mass transfer was proportional to the power input. The EDM process is a feasible method for machining of carbon-carbon composites.  相似文献   

5.
基于多功能加工平台的微细电解加工   总被引:3,自引:0,他引:3  
电解加工在加工过程中因难以控制加工形状而很少应用在微细加工领域,为了对微细电解加工可行性进行探索,设计了多功能微细加工平台,利用多功能微细加工平台可为微细电解加工在线制作电极,采用低加工电压、低浓度的钝化电解液、高频窄脉冲电源和高速旋转的微细电极,进行了微细电解加工实验,取得了很好的工艺效果,加工间隙是影响加工精度的关键因素,设计了一个加工间隙控制伺服系统,以保证微小的加工间隙,在厚为100μm的不锈钢薄片上用微细电解打孔加工出直径为65μm的微小孔,利用微细电解加工时电极无损耗,提出采用简单圆柱微细电极进行微细电解铣削,加工出较高精度的微结构,取得了较好的工艺效果,从而验证了该微细电解加工装置的微细加工能力和方法的可行性。  相似文献   

6.
Day-to-day interest is growing in the drilling of high aspect-ratio deep microholes in various hard-to-machine and newer materials. Besides cost-effectiveness in the manufacturing process, an accurate dimension with the good surface finish is essential for microhole drilling. The conventional methods encounter various problems such as residue stresses, heat generation near cutting zone, high tool-wear, etc. Electrochemical microdrilling (ECMD) is one of the cost-effective techniques, provide a better alternative in drilling microholes with reasonably accurate dimensions and good surface finish in various industrial applications especially in computer, electronic, and aerospace industries. This article reviews current researches and developments of electrochemical processes for circular microholes drilling. It highlights the effects of various key factors (such as the development of microtools, electrolyte, inter-electrode-gap monitoring and control, etc.) on the aspect-ratio and accuracy of circular microholes, produced by ECMD. For further research, it will open up various challenging opportunities, especially in the field of (i) development and handling of microtool electrodes, (ii) development and handling of electrolytes medium, (iii) development in monitoring and controlling techniques of inter-electrode-gap, and (iv) development in strategies for process control for drilling high quality, deep and high aspect-ratio circular microholes into hard-to-machine materials using ECMD.  相似文献   

7.
Deep or large aspect ratio microholes are needed in products made of aluminum alloys that find applications in space, automotive, and other sectors. In the present work, microholes of 500?µm diameter are produced by mechanical microdrilling. By following peck drilling strategy, microholes having aspect ratio of 6 are drilled in 3-mm thick aluminum 6061-T6 plates. Microdrills being slender and having low rigidity, breakage of these drills is a common occurrence. Hence it is necessary to analyze thrust force as well as torque obtained in microdrilling. For reliable measurement, the thrust force from a dynamometer and torque from a torque sensor is acquired simultaneously using a novel arrangement. For comparison, another set of experiments is also performed to produce 0.5-mm diameter blind holes by direct drilling and the results are further discussed. The causes for increase in forces at some peck steps during microdrilling of holes are explained using the signals and images acquired during the process. By having a threshold on the drilling torque, it is possible to control the microdrilling process and minimize the microdrill breakages.  相似文献   

8.
In this investigation, cemented tungsten carbides graded K10 and P10 were machined by electrical discharge machining (EDM) using an electrolytic copper electrode. The machining parameters of EDM were varied to explore the effects of electrical discharge energy on the machining characteristics, such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness. Moreover, the effects of the electrical discharge energy on heat-affected layers, surface cracks and machining debris were also determined. The experimental results show that the MRR increased with the density of the electrical discharge energy; the EWR and diameter of the machining debris were also related to the density of the electrical discharge energy. When the amount of electrical discharge energy was set to a high level, serious surface cracks on the machined surface of the cemented tungsten carbides caused by EDM were evident.  相似文献   

9.
The most common dielectric in sinking electrical discharge machining (EDM) is kerosene. However, kerosene is inflammable; besides, it can be decomposed and release harmful gases during machining process. And, owing to its low viscosity, using kerosene in sinking EDM has low machining efficiency. Accordingly, conventional sinking EDM using kerosene as dielectric has poor safety, unfriendly environment impact, and low machining efficiency. A new water-in-oil (W/O) nanoemulsion is presented in this paper. This W/O nanoemulsion not only can eliminate the hazards from kerosene to operator and environment but also improve the machining performance of conventional sinking EDM. This research aims to experimentally investigate the machining performance of W/O nanoemulsion in comparison with kerosene in sinking EDM at relatively low discharge energy. The effects of electrode material, electrode polarity, peak current, and pulse duration on machining performance are studied. The machined surface and recast layer of workpiece are characterized as well. The experimental results demonstrate that compared with kerosene, using W/O nanoemulsion in sinking EDM can obtain a higher material removal rate (MRR), a lower relative electrode wear rate (REWR), and a machined workpiece with fewer defects and thinner recast layer.  相似文献   

10.
In the present research, composite electrode (Cu–Mn) manufactured through powder metallurgy has been used to machine hot die steel (H11) by electrical discharge machining (EDM) process with the aim of inducing manganese and carbon into the machined surface. Such alloying is expected to improve the microhardness and other surface characteristics. Best level of process parameters for better surface finish and high microhardness are found using Taguchi method. Six processing parameters are considered and their significance is investigated by analysis of variance. Techniques like energy dispersive spectroscopy, scanning electron microscopy, and X-ray diffraction are used to ascertain the surface characteristics. Surface machined at optimum process conditions for microhardness shows 93.7% improvement due to formation of cementite, ferrite and manganese carbide phases. Surface roughness having Ra value of 3.11 µm has been achieved.  相似文献   

11.
In the present work, aluminum alloy 6061/10%SiC composite is machined using numerical controlled Z-axis (ZNC) electrical discharge machining (EDM) process. Improvement in material removal rate (MRR) is explored using tungsten powder suspended dielectric fluid in EDM process (powder-mixed electrical discharge machining (PMEDM)). Peak current, pulse on time, pulse off time, and gap voltage are studied as process parameters. Mathematical relation between process parameters and MRR is established on basis of response surface methodology. The results obtained are further compared with MRR achieved from machining using simple EDM. The existence of tungsten particles in kerosene resulted in 48.43% improvement in MRR. The influence of tungsten powder-mixed dielectric fluid on machined surface is analyzed using scanning electron microscope and energy dispersive spectroscopy (EDS). The results revealed improvement in surface finish and reduction in recast layer thickness with PMEDM. EDS analysis reported presence of tungsten and carbon in recast layer deposited on machined surface.  相似文献   

12.
王静  王舰  徐红波  张婉萍 《纳米科技》2013,(3):27-31,41
以Bi(NO3)3·5H2O和V2O5作为铋源和钒源,水热合成法成功合成出枝晶状m—BiVO4,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT—IR)和紫外一可见光谱(UV—Vis)等方法对样品进行了详细的理化性能表征,结果证明,合成的光催化剂是结晶良好的枝晶状m-BiVO4:m—BiVO4中心微米棒边缘光滑,粗细均匀,平均直径为500nm,长度范围为6—10μm;两侧分枝长度范围在5—8μm,平均直径为400nm。试验选用刚果红作为目标降解有机染料,研究m—BiVO4对其光降解活性,120min内刚果红的光降解率达到了90%。  相似文献   

13.
This paper presents a study of the EDM machining of H13 and D2 tool steels using electrodes of different diameters. Scanning electron microscopy is employed to analyze the machined surface, and the concept of a Crack Critical Line (CCL) is introduced to explore the influence of electrode size, EDM parameters and material thermal conductivity on surface cracking. The current results reveal that the surface crack distribution is influenced by the machining parameters, the electrode diameter and the material conductivity. It is noted that cracks tend not to appear when the machining is performed with a decreased pulse current and an increased pulse-on duration. Furthermore, it is observed that changing the electrode diameter causes a parallel shift of the CCL location within the crack distribution map. The intercept of the line depends on the electrode size. When small diameter electrodes are employed in the machining process, the location of the CCL shifts upwards. This causes the no-crack zone to enlarge, and therefore permits a wider choice of machining parameters to be adopted.  相似文献   

14.
In the present work, a parametric study of EDM process using Argon-Gas-Assisted EDM (AGAEDM) with rotary tool during machining of high chromium high carbon diesteel has been performed. The pulse on time, tool rotation, discharge current, duty cycle, and gas pressure were selected as process factors. The effects of process factors were investigated on responses viz. surface roughness (SR), material removal rate (MRR), and electrode wear ratio (EWR). A comparison between solid tool, air-assisted tool, and argon-assisted tool has also been presented. It was found that EWR and SR were less during AGAEDM process as compared to rotary EDM(REDM) with solid tool and air-assisted EDM (AAEDM) with rotary tool under same process parameters. However, MRR was found to be higher in AAEDM process. The regression analysis and analysis of variance have been done to develop and find the adequacy of the developed models of MRR, EWR, and SR. It was observed that surface integrity of workpiece machined by AGAEDM was better than workpiece machined by AAEDM and conventional REDM process.  相似文献   

15.
In this study, a newly developed method of electric discharge machining has been proposed, which uses magnetorheological (MR) fluid instead of conventional oil like kerosene. The paper aims to reveal the process parameters that affect the material removal rate (MRR) during newly developed EDM process. This hybrid machining process showed dual advantage of high-quality machined surface with improved cutting efficiency. The viscoelastic nature of MR fluid is found to give polishing effect as well as high material removal resulting in more stable processing and improved EDM performance. The experimentation has been performed to determine effect of duty cycle, discharge current, pulse on time, percentage concentration of alumina particles surface roughness, and MRR. It has been found that MRR and surface finish improved significantly. The experimental results demonstrated that the EDM process combined with MR fluid resulted in an increase in MRR and surface finish significantly under a certain limit of carbonyl iron percentage (CIPs) in MR fluid.  相似文献   

16.
The objective of this research is to investigate the machining characteristics of manganese-zinc (Mn-Zn) ferrite magnetic material using electrical-discharge machining (EDM). The material removal rate, the surface topography, the surface roughness, the recast layer, and the chemical composition of the machined surface were studied in terms of EDM processing variables. Experimental results indicate that the morphology of debris revealed the mechanism of material removal. The surface microgeometry characteristics are not always uniform and homogenous and the EDM process produces much damage on the machined surface. The material removal rate, the surface roughness, and the recast layer are proportional to the applied discharge energy.  相似文献   

17.
This paper presents a new approach of tool wear compensation based on “volume removal per discharge” (VRD) in “reverse-micro-electrical-discharge machining.” In this process, a plate with predrilled microhole is used as a tool, the erosion of which limits the fabrication of desired height of microrod(s). Therefore, in order to achieve the dimensional accuracy of this microrod(s), such tool plate wear needs to be compensated. Since this approach is based on the real-time estimation of volume removal from workpiece, which is obtained by multiplying the number of “contributing” pulses with VRD, an accurate estimation of VRD is very much essential for availing correct tool wear compensation. In this work, VRD is estimated by considering two new aspects: the number of actual “contributing” pulses and the variation of VRD with machining depth. These pulses are identified by a “pulse discriminating” system developed in house. The real-time material removal volume from workpiece is then used to estimate the “real-time height” of microrods after considering the over cut and taperness of each microrod. The proposed method is also compared with the normal machining method and “uniform wear method” and found to be more accurate with a negligible error of maximum 1.7%.  相似文献   

18.
bdElectrical discharge machining (EDM) studies on reactive sintered FeAl were carried out with different process parameters. The metal removal rate and tool removal rate were found to increase with the applied pulse on-time. The surface roughness of machined surface also changed with the applied pulse on-time. XRD analysis of machined surface of sintered FeAl showed the formation of Fe3C phase during the EDM process. The debris analysis was used to identify the material removal mechanism occurring during the EDM of sintered FeAl.  相似文献   

19.
A functionally Graded 15-35 volume% silicon carbide particulate (SiCp) reinforced Al359 metal matrix composite (SiCp/Al MMC) was drilled by electrical discharge machining (EDM) to assess the machinability and workpiece quality. The machining conditions were identified for both the machining performance and workpiece quality of the EDM process, including some aspects of material removal mechanisms, material removal rate (MRR), electrode tool wear, and subsequent drilled hole quality including surface texture and roundness by using surface profilometry, coordinate measuring machine (CMM), and scanning electron microscopy (SEM). It was observed that the material removal rate increases with increasing peak current and pulse-on-time up to the optimal points and drops drastically thereafter. Higher peak current and/or pulse-on-time result in both the greater tool wear and the larger average diameter error. As the percentage of the SiC particles increases, MRR was increased and electrode wear was found to be decreased. At the EDM machined subsurface layer, the fragmented and melted SiC particles were observed under the SEM and EDX-ray examination.  相似文献   

20.
Electrical discharge machining (EDM) process is popular for machining conductive and difficult-to-cut materials, but low material removal rate (MRR) and poor surface quality are major limitations of the process. These limitations can be overcome by adding the suitable powder in the dielectric. The powder particles influence electric field intensity during the EDM process which in turn improve its performance. The size (micro to nano) and properties of the mixed powder also influence the machining efficiency. In this regard, the objective of the present work is to study the performance of EDM process for machining Inconel 825 alloy by mixing Al2O3 nanopowder in deionized water. The experimental investigation revealed that maximum MRR of 47?mg/min and minimum SR of 1.487?µm, which are 44 and 51% higher in comparison to conventional EDM process, respectively, can be achieved by setting optimal combinations of process parameters. To analyze these observed process behavior, pulse-train data of the spark gap were acquired. The discharge waveform identifies the less arcing phenomenon in the modified EDM process compared to conventional EDM. Further, surface-topography of the machined surface was critically examined by capturing field emission scanning electron microscopy and atomic force microscopy images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号