首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanoparticles of Fe3O4 as well as the binary nanoparticles of ionic liquid and Fe3O4 (IL-Fe3O4) were synthesized for removal of reactive red 120 (RR-120) and 4-(2-pyridylazo) resorcinol (PAR) as model azo dyes from aqueous solutions. The mean size and the surface morphology of the nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. Adsorption of RR-120 and PAR was studied in a batch reactor at different experimental conditions such as nanoparticle dosage, dye concentration, pH of the solution, ionic strength, and contact time. Experimental results indicated that the IL-Fe3O4 nanoparticles had removed more than 98% of both dyes under the optimum operational conditions of a dosage of 60 mg, a pH of 2.5, and a contact time of 2 min when initial dyes concentrations of 10-200 mg L−1 were used. The maximum adsorption capacity of IL-Fe3O4 was 166.67 and 49.26 mg g−1 for RR-120 and PAR, respectively. The isotherm experiments revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The Langmuir adsorption constants were 5.99 and 3.62 L mg−1 for adsorptions of RR-120 and PAR, respectively. Both adsorption processes were endothermic and dyes could be desorbed from IL-Fe3O4 by using a mixed NaCl-acetone solution and adsorbent was reusable.  相似文献   

2.
The investigation of adsorption of nitrate onto chitosan beads modified by cross-linking with epichlorohydrin (ECH) and surface conditioning with sodium bisulfate was performed. The results indicated that both cross-linking and conditioning increased adsorption capacity compared to normal chitosan beads. The maximum adsorption capacity was found at a cross-linking ratio of 0.4 and conditioning concentration of 0.1 mM NaHSO4. The maximum adsorption capacity was 104.0 mg g−1 for the conditioned cross-linked chitosan beads at pH 5, while it was 90.7 mg g−1 for normal chitosan beads. The Langmuir isotherm model fit the equilibrium data better than the Freundlich model. The mean adsorption energies obtained from the Dubinin-Radushkevich isotherm model for all adsorption systems were in the range of 9.55–9.71 kJ mol−1, indicating that physical electrostatic force was potentially involved in the adsorption process.  相似文献   

3.
The preparation of carbon from waste materials is a recent and economic alternative for the removal of dyes. In this study four samples of carbon were obtained by thermal treatment at 1000 °C using as precursor the guava seed with different particle sizes. The Taguchi method was applied as an experimental design to establish the optimum conditions for the removal of acid orange 7 in batch experiments. The chosen experimental factors and their ranges were: pH (2–12), temperature (15–35 °C), specific surface area (50–600 m2 g−1) and adsorbent dosage (16–50 mg ml−1). The orthogonal array L9 and the larger the better response category were selected to determine the optimum removal conditions: pH 2, temperature 15 °C, Sesp 600 m2 g−1 and dosage 30 mg ml−1. Under these conditions a total removal of acid orange 7 was achieved. Moreover, the most significant factors were the carbon specific surface area and the pH. The influence of the different factors on the adsorption of acid orange 7 from solution is explained in terms of electrostatic interactions by considering the dye species and the character of the surface.  相似文献   

4.
Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4 nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130 °C for 24 h exhibits a maximum adsorption capability of about 197 mg g−1 in the neutral methylene blue (MB) solution (40 mg L−1) within 90 min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50 min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40 mg L−1) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application.  相似文献   

5.
This paper reports results of laboratory studies on two pretreatment methods, struvite precipitation using aeration with H3PO4 and Fenton oxidation. These methods utilized specific properties of the leachate: high magnesium content (172 mg L−1) for struvite precipitation and a high iron concentration (56 mg L−1) for Fenton treatment. Struvite precipitation (H3PO4, 700 mg L−1) removed 36% of NH3-N and 24% of SCOD. Fenton treatment (at pH 3.5) required 650 mg L−1 of H2O2 and removed 66% of SCOD. The effect of each pretreatment on the returned activated sludge (RAS) was evaluated using respirometry. Both methods reduced the inhibitory effect of the leachate and substantially increased biokinetic parameters. The BOD5/SCOD ratio increased from 0.63 for raw leachate to 0.82 (struvite) and 0.88 (Fenton). Estimation of capital and operational costs of the total leachate treatment indicated that aeration with struvite precipitation, followed by biological treatment, would be the preferred option.  相似文献   

6.
A novel sodium calcium borate glass derived hydroxyapatite (G-HAP) with different ranges of particle size was prepared by immersion sodium calcium borate glass in 0.1 M K2HPO4 solution by the ratio of 50 g L−1 for 7 days. The unique advantage of G-HAP for the adsorption of fluoride ions in solutions was studied. The effects of size and quantity of particles, pH value and adsorption time on adsorption performance were investigated. The maximum adsorption capacity was 17.34 mg g−1 if 5 g L−1, <100 μm G-HAP was added to a solution with an initial pH value of 6.72 and the adsorption time was 12 h. The results showed that the micro-G-HAP could immobilize F in solution more effectively than commercial nano-HAP, which makes potential application of the G-HAP in removing the fluoride ions from wastewater. The adsorption kinetics and isotherms for F could be well fitted by a second order kinetic model and Freundlich isotherm model respectively, which could be used to describe the adsorption behavior. The mechanism of G-HAP in immobilizing F from aqueous solutions was investigated by the X-ray diffraction (XRD), infrared spectra (IR) and scanning electron microscopy (SEM).  相似文献   

7.
In this study, organobentonites were prepared by modification of bentonite with various cationic surfactants, and were used to remove As(V) and As(III) from aqueous solution. The results showed that the adsorption capacities of bentonite modified with octadecyl benzyl dimethyl ammonium (SMB3) were 0.288 mg/g for As(V) and 0.102 mg/g for As(III), which were much higher compared to 0.043 and 0.036 mg/g of un-modified bentonite (UB). The adsorption kinetics were fitted well with the pseudo-second-order model with rate constants of 46.7 × 10−3 g/mg h for As(V) and 3.1 × 10−3 g/mg h for As(III), respectively. The maximum adsorption capacity of As(V) derived from the Langmuir equation reached as high as 1.48 mg/g, while the maximum adsorption capacity of As(III) was 0.82 mg/g. The adsorption of As(V) and As(III) was strongly dependent on solution pH. Addition of anions did not impact on As(III) adsorption, while they clearly suppressed adsorption of As(V). In addition, this study also showed that desorbed rates were 74.61% for As(V) and 30.32% for As(III), respectively, after regeneration of SMB3 in 0.1 M HCl solution. Furthermore, in order to interpret the proposed absorption mechanism, both SMB3 and UB were extensively characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analyses.  相似文献   

8.
This paper explored a novel process for wastewater treatment, i.e. microwave enhanced Fenton-like process. This novel process was introduced to treat high concentration pharmaceutical wastewater with initial COD loading of 49,912.5 mg L−1. Operating parameters were investigated and the optimal condition included as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.42, H2O2 dosage was 1300 mg L−1 and Fe2(SO4)3 dosage was 4900 mg L−1, respectively. Within the present experimental condition used, the COD removal and UV254 removal reached to 57.53% and 55.06%, respectively, and BOD5/COD was enhanced from 0.165 to 0.470. The variation of molecular weight distribution indicated that both macromolecular substances and micromolecular substances were eliminated quite well. The structure of flocs revealed that one ferric hydrated ion seemed to connect with another ferric hydrated ion and/or organic compound molecule to form large-scale particles by means of van der waals force and/or hydrogen bond. Subsequently, these particles aggregated to form flocs and settled down. Comparing with traditional Fenton-like reaction and conventional heating assisted Fenton-like reaction, microwave enhanced Fenton-like process displayed superior treatment efficiency. Microwave was in favor of improving the degradation efficiency, the settling quality of sludge, as well as reducing the yield of sludge and enhancing the biodegradability of effluent. Microwave enhanced Fenton-like process is believed to be a promising treatment technology for high concentration and biorefractory wastewater.  相似文献   

9.
Zinc recovery and waste sludge minimization from chromium passivation baths   总被引:1,自引:0,他引:1  
This work reports the feasibility of applying emulsion pertraction technology (EPT) aiming at zinc recovery and waste minimization in the zinc electroplating processes that include Cr (III) passivation. The assessment consists of firstly the lifetime extension of the passivation baths by selective removal of the tramp ions zinc and iron, and secondly, the recovery of zinc for further reuse. Spent passivation baths from a local industry were tested, being the major metallic content: Cr3+ 9000 mg L−1, Zn2+ 12,000 mg L−1, Fe3+ 100 mg L−1. Working in a Liqui-Cel hollow fiber membrane contactor and using the extractant bis(2,4,4-trimethylpentyl) phosphinic acid, reduction of zinc and iron concentrations below 60 mg L−1 and 2 mg L−1, respectively were obtained, while trivalent chromium, the active metal that generates the passivation layer, was retained in the baths. Zinc was selectively transferred to an acidic stripping phase that in the experimental time reached a concentration of 157,000 mg L−1. Zinc recovery by electrowinning from the acidic stripping phase without any pretreatment of the electrolyte solution provided a purity of 98.5%, matching the lower commercial zinc grade. As a result of the extension of the life time of the passivation bath, significant environmental advantages are derived such as minimization of the volume of hazardous wastes and savings in the consumption of raw materials.  相似文献   

10.
In this study, a new reactively fibrous adsorbent was prepared by grafting 4-vinly pyridine (4-VP) and 2-hydroxyethylmethacrylate (HEMA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers for removal of Cr(VI), Cu(II) and Cd(II) metal ions from aqueous solution by using batch adsorption method. The influence of various parameters such as graft yield (GY), pH, adsorption time, initial ion concentration and adsorption temperature was investigated. The selectivity of the reactive fiber was also examined. The results show that the adsorbed amount of metal ions followed as given in the order Cr(VI) > Cd(II) > Cu(II). At pH 3, Cr(VI) was removed by 99% while the initial concentration of ions was at 5 mg L−1 and by 94% at 400 mg L−1. It was found that the grafted fiber is more selective for Cr(VI) ions in the mixed solution of Cr(VI)–Cu(II), Cr(VI)–Cd(II) and Cr(VI)–Cu(II)–Cd(II) at pH 3 and it was observed that the grafted fibers are stable and regenerable by acid and base without losing their activity.  相似文献   

11.
A new method that utilizes zincon-modified activated carbon (AC-ZCN) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III) and Pb(II) onto the AC-ZCN were 17.9 and 26.7 mg g−1, respectively. The adsorbed metal ions were quantitatively eluted by 1 mL of 0.1 mol L−1 HCl. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr(III) and Pb(II) were 0.91 and 0.65 ng mL−1, respectively. The relative standard deviation under optimum condition is less than 3.5% (n = 8). The method has been applied for the determination of Cr(III) and Pb(II) in biological materials and water samples with satisfactory results.  相似文献   

12.
Wastewaters of textile and leather dying industries may contain significant quantities of chromium(VI) ions besides anionic and water-soluble dyes. Moreover the temperature of these wastewaters may be a controlling parameter affecting the biosorption efficiency. In this study biosorption of chromium(VI) and Remazol Black B reactive dye by dried Phormidium sp., a thermophilic cyanobacterium, was studied as a function of initial chromium(VI) concentration and temperature in no dye and 100 mg l−1 dye-containing media at an initial pH value of 2.0 at which the biomass exhibited the maximum chromium(VI) and dye uptakes. The decrease of both metal and dye uptakes with temperature indicated that the uptakes were exothermic in nature. Equilibrium uptake of chromium(VI) enhanced considerably with both chromium(VI) and 100 mg l−1 dye concentrations. Moreover the presence of chromium(VI) also increased the uptake of dye. At 25 °C, 22.8 mg g−1 chromium(VI) and 91.3 mg g−1 dye were sorbed by the biomass in binary 100 mg l−1 chromium(VI) and 100 mg l−1 dye-containing medium. The Langmuir was the best suitable adsorption model for describing the biosorption of chromium(VI) individually and in dye-containing medium. The pseudo-second-order kinetic model described both the chromium(VI) and dye biosorptions kinetics accurately.  相似文献   

13.
An efficient dye biosorbent was developed by entrapping a fungus mold, Trichoderma viride, within loofa sponge (LS) matirx. Immobilization enhanced the sorption of dye by 30% at equilibrium as compared with T. viride free biomass (TVFB). The maximum dye biosorption capacity of T. viride immobilized onto loofa sponge (TVILS) and TVFB was found to be 201.52 and 155.06 mg g−1 biomass, respectively. The kinetics of dye removal by TVILS was rapid, with 84.3% sorption within the first 30 min and equilibrium after 90 min, whereas sorption by TVFB was slower as 61.4% dye was removed in first 30 min and equilibrium was achieved in 120 min. Biosorption kinetics and equilibria followed the pseudo-second-order and Langmuir adsorption models. FTIR spectroscopy of T. viride biomass showed that amine, hydroxyl, carbonyl and amide bonds were involved in the sorption of dye. Dye desorption from dye-laden TVILS with 0.1 M HCl was 99%. Regenerated TVILS was reusable without any appreciable decrease in its biosorption capacity during five repeated cycles. The dye removing capacity of TVILS in a continuous-flow column bioreactor was better than in batch-scale procedures. The study shows that TVILS has the potential of application as an efficient biosorbent for the removal of methylene blue from aqueous solutions.  相似文献   

14.
The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18–24 °C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L−1 d−1 due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L−1 d−1. By working at a dissolved oxygen concentration of 0.5 mg L−1 in the bulk liquid, nitrogen removal percentages up to 85% were achieved.  相似文献   

15.
Arsenic (As) poses a significant water quality problem and challenge for the environmental engineers and scientists throughout the world. Batch tests were carried out in this study to investigate the adsorption of As(V) on NanoActive alumina. The arsenate adsorption envelopes on NanoActive alumina exhibited broad adsorption maxima when the initial As(V) loading was less than a 50 mg g−1 sorbent. As the initial As(V) loading increased to 50 mg g−1 sorbent, a distinct adsorption maximum was observed at pH 3.2–4.6. FTIR spectra revealed that only monodentate complexes were formed upon the adsorption of arsenate on NanoActive alumina over the entire pH range and arsenic loading conditions examined in this study. A speciation-based adsorption model was developed to describe arsenate adsorption on NanoActive alumina and it could simulate arsenate adsorption very well in a broad pH range of 1–10, and a wide arsenic loading range of 0.5–50 mg g−1 adsorbent. Only four adjustable parameters, including three adsorption constants, were included in this model. This model offers a substantial improvement over existing models in accuracy and simplification in quantifying pH and surface loading effects on arsenic adsorption.  相似文献   

16.
Nanoporous carbons were synthesized by chemical vapor deposition using furfuryl alcohol/butylene as a carbon source and zeolite Y as a hard template (ZYC). The ZYC were characterized by PXRD, N2 sorption, and SEM. The carbon materials exhibited predominant microporosity, and the specific surface area increased from 2563 to 3010 m2 g−1 as the pyrolysis temperature was raised from 800 to 1000 °C. ZYC prepared at 1000 °C showed a CO2 adsorption capacity of 986 mg g−1adsorbent at 40 bar 298 K, which surpasses the capacities of commercial carbons and mesoporous carbon CMK-3, and closely approaches the best performance of the metal organic framework MOF-177. The CO2 adsorption capacities of the adsorbents were found to be closely correlated with the BET surface areas of the materials tested.  相似文献   

17.
Strong adsorption of chlorotetracycline on magnetite nanoparticles   总被引:2,自引:0,他引:2  
In this work, environmentally friendly magnetite nanoparticles (Fe3O4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe3O4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe3O4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe3O4 (476 mg g−1) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L−1. But high concentration of HA (>20 mg L−1) increased the CTC adsorption on Fe3O4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe3O4 MNPs were regenerated by treatment with H2O2 or calcination at 400 °C in N2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.  相似文献   

18.
Biofiltration of hydrophobic and/or recalcitrant volatile pollutants is intrinsically limited. In the present study, a combined ultraviolet-biotrickling filter (UV-BTF) was developed to improve the removal of these compounds, and a single BTF as the control was operated under the same conditions. The experimental results showed that the UV-BTF provided higher removal efficiencies than the single BTF at an inlet concentration range of 600-1500 mg m−3 under shorter residence times. The maximum elimination capacities (ECs) obtained were 94.2 mg m−3 h−1 and 44 mg m−3 h−1 in the combined UV-BTF and single BTF, respectively. The mass ratio of carbon dioxide produced to α-pinene removed in the UV-BTF was approximately 2.74, which was much higher than that of the single BTF (1.99). Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis indicated that there was more complicated microbial community in the UV-BTF than that in the single BTF. In addition, we investigated the effect of starvation or stagnation on re-acclimation and removal performance from an engineering standpoint. The results showed that the combined UV-BTF could deal with fluctuating conditions or periods without any flow (air or liquid) supply much better than the single BTF.  相似文献   

19.
In this study, the removal of perchlorate (0.016 mM ) using Fe0-only (325 mesh, 10 g L−1) and Fe0 (10 g L−1) with UV (254 nm) reactions were investigated under oxic and anoxic conditions (nitrogen purging). Under anoxic conditions, only 2% and 5.6% of perchlorate was removed in Fe0-only and Fe0/UV reactions, respectively, in a 12 h period. However, under oxic conditions, perchlorate was removed completely in the Fe0-only reaction, and reduced by 40% in the Fe0/UV reaction, within 9 h. The pseudo-first-order rate constant (k1) was 1.63 × 10−3 h−1 in Fe0-only and 4.94 × 10−3 h−1 in Fe0/UV reaction under anoxic conditions. Under oxic conditions, k1 was 776.9 × 10−3 h−1 in Fe0-only reaction and 35.1 × 10−3 h−1 in the Fe0/UV reaction, respectively. The chlorine in perchlorate was recovered as chloride ion in Fe0-only and Fe0/UV reactions, but lower recovery of chloride under oxic conditions might due to the adsorption/co-precipitation of chloride ion with the iron oxides. The removal of perchlorate in Fe0/UV reaction under oxic conditions increased in the presence of methanol (73%, 9 h), a radical scavenger, indicating that OH radical can inhibit the removal of perchlorate. The removal of perchlorate by Fe0-only reaction under oxic condition was highest at neutral pH. Application of the Langmuir-Hinshelwood model indicated that removal of perchlorate was accelerated by adsorption/co-precipitation reactions onto iron oxides and subsequent removal of perchlorate during further oxidation of Fe0. The results imply that oxic conditions are essential for more efficient removal of perchlorate in Fe0/H2O system.  相似文献   

20.
A sewage-integrated treatment system (SITS) for the treatment of municipal wastewater, consisting of an expanded granular sludge bed (EGSB) reactor to remove soluble organic matter and an electrochemical (EC) reactor to oxidize the NH3-N, was evaluated. The performance of the EGSB reactor was monitored for 12 months in a pilot-scale plant. Iron shavings were added to the EGSB reactor on the sixtieth day to improve the removal efficiency of the chemical oxygen demand (COD), suspended solids (SS) and total phosphorus (TP). After the iron shavings were added, the effluent COD, SS and TP decreased from 104 to 46 mg L−1, 21 to 8.6 mg L−1 and 3.62 to 1.36 mg L−1, respectively. Moreover, in the EC reactor, which was equipped with IrO2/Ti anodes, the NH3-N and total nitrogen (TN) concentrations decreased from 25 to 12 mg L−1 and 29 to 15 mg L−1, respectively. The NH3-N was directly oxidized to N2, resulting in no secondary pollution. The results demonstrated the possibility of removing carbon and nutrients in a SITS with high efficiency. The system runs efficiently and with a flexible operation, making it suitable for low-strength wastewater. The results and parameters presented here can provide references for the practical project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号