首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Networks of pristine high quality single walled carbon nanotubes (SWNTs), the SWNTs after Ar-plasma treatment (from 2 to 12 min) and carbon nanobuds (CNBs) have been tested for ethanol vapor sensing. It was found that the pristine high quality SWNTs do not exhibit any ethanol sensitivity, while the introduction of defects in the tubes results in the appearance of the ethanol sensitivity. The CNB network showed ethanol sensitivity without plasma treatment. Both CNB and low defect (after 3 min treatment) SWNT networks exhibit significant drift in the resistance baseline, while heavily plasma-treated (9 min) SWNTs exhibited high ethanol vapor sensitivity without the baseline change. The mechanisms of the ethanol sensitivity and stability after the plasma irradiation are attributed to the formation of sensitive dangling bonds in the SWNTs and formation of defect channels facilitating access of the ethanol vapor to all parts of the bundled nanotubes.   相似文献   

2.
采用熔融聚合法和反复机械拉伸法,制备出定向排列单壁纳米碳管(SWNTs)/聚酰亚胺(PI)复合材料。研究了纳米碳管在复合体中的排列和分散情况。讨论了填充纳米碳管的质量分数对复合材料导电性能的影响,发现SWNTs填充质量分数很少时,复合体系呈现渗流行为,表现出良好的导电性和各向异性,其电导率随着填充纳米碳管的质量分数增加,电导率增大,而且在其拉伸方向比其垂直方向显示出较高的电导率,沿着其拉伸方向的渗流阈值比其垂直方向要低,说明单壁碳纳米管在复合物材料中呈现出良好的排列和均匀分散。  相似文献   

3.
The pretilt angles for the optically compensated bend (OCB) mode liquid crystals have been improved using novel patterned dual alignment coating structures in this study. The transition from the splay configuration to the bend configuration can thus be effectively reduced. The dual alignment coating structures consisted of a horizontal alignment polyimide (PI) and a patterned vertical alignment liquid crystal polymer (LCP). Three patterning masks were designed for the photolithography process. The pretilt angles were demonstrated to be increased to 34 degrees for the triangle lattice array-patterned cells. It became 31 degrees for the square lattice array-patterned cells, and 24 degrees for the honeycomb lattice array-patterned cells. The improved pretilt angles were illustrated by the force balance model that can be predicted by the LCP area ratio. The effective control over the pretilt angle could improve the response time to 2 ms when the voltage was ramped up to 5.5 V for the OCB mode liquid crystal devices.  相似文献   

4.
Abstract

The magnetic orientation of single-walled carbon nanotubes (SWNTs) or the SWNT composites wrapped with polymer using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] (MEHPPV) as the conducting polymer were examined. The formation of SWNT/MEHPPV composites was confirmed by examining absorption and fluorescence spectra. The N,N-dimethylformamide solution of SWNT/MEHPPV composites or the aqueous solution of the shortened SWNTs was introduced dropwise onto a mica or glass plate. The magnetic processing of the composites or the SWNTs was carried out using a superconducting magnet with a horizontal direction (8 T). The AFM images indicated that the SWNT/MEHPPV composites or the SWNTs were oriented randomly without magnetic processing, while with magnetic processing (8 T), they were oriented with the tube axis of the composites or the SWNTs parallel to the magnetic field. In polarized absorption spectra of SWNT/MEHPPV composites on glass plates without magnetic processing, the absorbance due to semiconducting SWNT in the near-IR region in horizontal polarized light was almost the same as that in vertical polarized light. In contrast, with magnetic processing (8 T), the absorbance due to semiconducting SWNT in the horizontal polarization direction against the direction of magnetic field was stronger than that in the vertical polarization direction. Similar results were obtained from the polarized absorption spectra for the shortened SWNTs. These results of polarized absorption spectra also support the magnetic orientation of the SWNT/MEHPPV composites or the SWNTs. On the basis of a comparison of the composites and the SWNTs alone, the magnetic orientation of SWNT/MEHPPV composites is most likely ascribable to the anisotropy in susceptibilities of SWNTs.  相似文献   

5.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

6.
To enhance the strength, ramie fibers aligned in vertical (V), horizontal (H) as well as both vertical and horizontal (X) directions were used to reinforce soy protein materials (SC), coded as VSC, HSC and XSC. The soy protein isolate was arylated with 2,2-diphenyl-2-hydroxyethanoic acid through the process of “dip-coating”, coded as SC-B. The SC and SC-B composite films were characterized by Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. Substantial improvement in the water uptake (from 100% to 25%) and the increased modulus (from 125 to 942 MPa) of the VSC-B composite were observed. This could be attributed to the formation of phase separation induced hydrophobic microparticles of DPHM on the surface of the SC-B films upon arylation, leading to the hydrophobicity. The thermal stability of the arylated composites increased compared to non-arylated ones. The VSC-B materials exhibited the highest water resistance and mechanical properties compared to HSC-B and XSC-B. Therefore, the arylation of SPI and alignment of the ramie fibers in the composites played an important role in the improvement of mechanical properties. This work provided a novel idea to improve the water resistance and modulus by reinforcing the protein matrix with natural fibers.  相似文献   

7.
N. Guermat  S. Sahli  Y. Segui 《Thin solid films》2009,517(15):4455-8477
The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.  相似文献   

8.
Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon‐nanotube (MWCNT)‐ and reduced‐graphene‐oxide (rGO)‐based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a “net”‐like model for MWCNT films and a “scale”‐like model for rGO films to explain these behaviors based on contributions from junction resistances (at interparticle junctions) and intrinsic resistances (of the particles). This phenomenology is accordingly validated via a series of experiments, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, a humidity‐insensitive MWCNT/rGO hybrid conductive films is developed, which has the potential to greatly improve the stability of carbon‐based electrical device to humidity. The authors further investigate the application of such films to human‐finger electronics by fabricating transparent flexible devices consisting of a polyethylene terephthalate substrate equipped with an MWCNT/rGO pattern for gesture recognition, and MWCNT/rGO/MWCNT or rGO/MWCNT/rGO patterns for 3D noncontact sensing, which will be complementary to existing 3D touch technology.  相似文献   

9.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

10.
We have prepared SrTiO3/BaTiO3 multilayer film on alumina substrates by a sol-gel technique and investigated their response for sensing ethanol vapor. The surface morphology of the films were characterized by atomic force microscope (AFM) showing that the grain size of the films increase up to 40 nm as the annealing temperature increased to 1000 degrees C. The ethanol sensors based on SrTiO3/BaTiO3 thin films were fabricated by applying interdigitated gold electrodes by sputtering technique. The ethanol sensing characteristics of SrTiO3/BaTiO3 thin films were quantified by the change in resistance of the sensors when they were exposed to ethanol. The optimum operating tempearature of these sensors was found to be 350 degrees C. In addition, the film annealed at 1000 degrees C exhibited p-type gas sensing behavior with the best sensitivity of 30-100 for low ethanol concentration in the range of 100-1000 ppm.  相似文献   

11.
A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz. Electrodes and dielectrics patterned on top of these arrays yield thin-film transistors that use the SWNTs as effective thin-film semiconductors. The ability to build high-performance devices of this type suggests significant promise for large-scale aligned arrays of SWNTs in electronics, sensors, and other applications.  相似文献   

12.
In this study, we systematically investigated the influence of catalyst preparation procedures on the mean diameter of single-walled carbon nanotubes (SWNTs) synthesized by the alcohol catalytic chemical vapor deposition (ACCVD) process. It was found that the SWNT diameter is dependent upon both reduction temperature and time, with lower reduction temperature and/or shorter reduction time resulting in smaller diameter SWNTs. The morphology of the SWNTs also changed from vertically aligned to randomly oriented when the reduction temperature was below 500 degrees C. We also found that introducing a small amount of water during the catalyst reduction stage significantly decreased the mean diameter of the SWNTs. Lastly, we report on the use of a new binary catalyst system in which rhodium was combined with cobalt. This new Co/Rh combination produced SWNTs of smaller diameter than the conventional Co/Mo catalyst.  相似文献   

13.
The single-walled carbon nanotubes (SWNTs) filled nanocomposite SWNT/epoxy resin composite with good uniformity, dispersion and alignment of SWNTs and with different SWNTs concentrations was produced by solution casting technique. Subsequently, the semidried mixture was stretched repeatedly along one direction at a large draw-ratio of 50 for 100 times at ambient atmosphere manually to achieve a good alignment and to promote dispersion of SWNTs in the composite matrix. Composite showed higher electrical conductivities and mechanical properties such as the Young’s modulus and tensile strength along the stretched direction than perpendicular to it, and the electrical property of composite rise with the increase of SWNT concentration. The percolation threshold value of electrical conductivity along the stretching direction is lower than the value perpendicular to the SWNTs orientation. In addition, the anisotropic electric and mechanical properties results, SEM micrograph and the polarized Raman spectra of the SWNT/epoxy composite reveal that SWNTs were well dispersed and aligned in the composites by the repeated stretching process.  相似文献   

14.
Vapor detectors formed from composites of conductors and insulating organic polymers have been tailored to produce increased sensitivity toward specific classes of analyte vapors. Upon exposure to acetic acid at 1% of its vapor pressure, detectors consisting of linear poly(ethylenimine) (1-PEI)-carbon black composites showed an approximately 10(3) increase in signal/noise relative to the performance of typical insulating organic polymer-carbon black composite vapor detectors. Compositional diversity in an array of such vapor detectors was obtained by varying the degree of plasticization of the 1-PEI films. The resulting vapor detector array produced sensitive detection of, and robust discrimination between, various volatile organic acids and relatively little response from nonacidic organic vapors or from water vapor. Measurements of the mass uptake, thickness change, and electrical conductivity of such composites indicate that swelling of the polymer film, and thus its normalized resistance response, is beyond that expected by mass uptake alone upon exposure to acetic acid vapor. This additional thickness increase is attributed to charge-induced polymer swelling occurring from polymer-analyte interactions. Electrical percolation also plays a significant role in producing the large increase in normalized resistance response of these composites upon exposure to acetic acid vapor.  相似文献   

15.
We demonstrate a "universal solvent sensor" constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand solubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, diisopropylmethylphosphonate (DIMP), and water are correctly identified ("classified") using three chemiresistors, their composite coatings chosen to span the full range of solubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified; following classification, two sensors suffice to determine the concentrations of both vapor components. Poly(ethylenevinyl acetate) and poly(vinyl alcohol) (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon particle composite films are sensitive to less than 0.25% relative humidity. The Sandia-developed visual-empirical region of influence (VERI) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal component analysis, VERI handles both linear and nonlinear data with equal ease. In the present study, the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.  相似文献   

16.
Gate-modulated transport through partially aligned films of single-walled carbon nanotubes (SWNTs) in thin film type transistor structures are studied experimentally and theoretically. Measurements are reported on SWNTs grown by chemical vapor deposition with systematically varying degrees of alignment and coverage in transistors with a range of channel lengths and orientations perpendicular and parallel to the direction of alignment. A first principles stick-percolation-based transport model provides a simple, yet quantitative framework to interpret the sometimes counterintuitive transport parameters measured in these devices. The results highlight, for example, the dramatic influence of small degrees of SWNT misalignment on transistor performance and imply that coverage and alignment are correlated phenomena and therefore should be simultaneously optimized. The transport characteristics reflect heterogeneity in the underlying anisotropic metal-semiconductor stick-percolating network and cannot be reproduced by classical transport models.  相似文献   

17.
Silicon nanoporous pillar array (Si-NPA), with micro/nanometer composite structure, was prepared by hydrothermally etching single crystal silicon. Resistive humidity sensors were fabricated through evaporating coplanar interdigital aluminium electrodes on Si-NPA and the humidity sensing properties were tested. It was shown that with relative humidity changing from 11.3% to 94.6%, a resistance device response over one order of magnitude with response time less than 1 s was achieved at frequency of 1 kHz. This extraordinary property was mainly attributed to the unique morphology of Si-NPA, i.e., the regular pillar array provided an effective pathway for vapor transportation and the nanoporous structure of the pillars greatly enlarged the sensing areas.  相似文献   

18.
《IEEE sensors journal》2006,6(5):1047-1051
A simple sensor platform consisting of an interdigitated electrode (IDE) pattern has been fabricated for sensing gas and organic vapors. Purified single-walled carbon nanotubes (SWNTs) in the form of a network laid on the IDE by solution casting serve as the sensor material. The electrical conductivity of the SWNT network changes reproducibly upon exposure to various gases and vapors. Selectivity to specific gases, for example, chlorine and hydrochloric acid vapor, is demonstrated by coating the SWNTs with polymers such as chlorosulfonated polyethylene and hydroxypropyl cellulose.  相似文献   

19.
A novel rigid linear polymer poly(phenyleneethynylene) (PPE) was synthesized and the polymer exhibits good solubility in both water and common organic solvents. The interaction at both ground and excited state between this polymer and single-walled carbon nanotubes (SWNTs) was studied and a water-soluble nano-scale PPE/SWNTs hybrid was fabricated, where the water solubility of SWNTs was enhanced to 1.8 mg/ml. Steady state fluorescence spectra and fluorescence lifetime decay measurements showed that the emissions from PPEs in this hybrid at excited state were efficiently quenched by the attachment of SWNTs, where an efficient energy transfer happened from PPEs to SWNTs as the electron acceptor. Using this hybrid as the active layer we fabricated a photovoltaic cell with the bulk heterojunction configuration, and it showed a photoresponse with an open circuit voltage (Voc) of 105 mV and a short circuit current density (Isc) of 28.7 microA/cm2 under standard AM 1.5 illumination (100 mW/cm2).  相似文献   

20.
The horizontal ZnO nanorods (NRs) were grown by using a low temperature hydrothermal method between the lithographic ZnO interdigital electrodes. In order to horizontally grow the ZnO nanorods, the vertical growth was restrained by coating with the photoresist on the surface nucleation sites. By controlling the distance between the electrodes, only the electrodes for an interval of 7 μm can be connected by the horizontal nanorods to form device. The electrical property of the device was measured. The detector showed a narrow ultraviolet photoresponse with a response peak at 379 nm, which was according with the peak of the photoluminescence. The mechanism of photoresponse was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号