首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitriding was carried out in low pressure plasma excited by single- or dual-frequency discharge modes, at a substrate temperature of 523 K, followed by the deposition of 3 μm thick TiCN or TiN/TiCN coatings at a PH15-5 substrate temperature of 723 K. The nitrided layer was comprised of two distinct sublayers, namely a compound layer and a diffusion layer, with a total thickness of ∼ 60 μm. The compound layer was γ′-Fe4N and the diffusion layer was a solid solution of nitrogen in iron. The thickness of the compound layer fabricated by a single mode plasma is ∼ 5 μm, while that fabricated by dual-frequency mode plasma is ∼ 35 μm.It was found, using a ball-on-disk test, that the plasma nitrided layer fabricated by dual-frequency mode improved wear resistance by nearly one order of magnitude and improved the erosion resistance by a factor of two, compared with untreated steel. This improvement was common to the two nitriding treatments and both types of hard coatings. In particular, a thicker compound layer did not impair the wear resistance or the erosion resistance of the duplex treatment. The erosion resistance shows a linear dependence on the hardness of the uppermost nitrided or deposited layer.  相似文献   

2.
Hard TiAl(B)N coatings were deposited by radio-frequency magnetron sputtering in reactive mode in an argon and nitrogen environment using a TiAlB target with 12 at.% of boron. The deposition was carried out under ion bombardment at various negative bias voltages in the range of 0 to 170 V, and at substrate temperatures between 453 and 523 K. The internal stress in the coatings was studied at room temperature as a function of annealing temperatures in ambient air up to 1123 K. The heating duration was 2 h followed by annealing for 1 h. The microstructure, phase composition and hardness were also studied prior to and after annealing.We found that the TiAlBN coatings consist of TiAl3 and TiN phases. With increasing ion bombardment, the structure of the coatings changes from columnar to nano-scale features. Prior to annealing we also observed a correlation between the residual stress and hardness. After annealing, the compressive stresses of the TiAl(B)N coatings decreased from 1.0 GPa to less than 0.2 GPa, while the hardness remained constant or increased from ∼ 10 GPa to ∼ 25 GPa. The hardness increase of the coatings after annealing is related to a self-hardening effect.  相似文献   

3.
Nitride films are deposited from a single equiatomic AlCrMoSiTi target by reactive DC magnetron sputtering. The influence of the substrate bias and deposition temperature on the coating structure and properties are investigated. The bias is varied from 0 to − 200 V while maintaining a substrate temperature of 573 K. And the temperature is changed from 300 to 773 K whilst maintaining a substrate bias of − 100 V. From X-ray diffraction analysis, it is found that all the as-deposited coatings are of a single phase with NaCl-type FCC structure. This is attributed to the high mixing entropy of AlN, CrN, MoN, SiN, and TiN, and the limited diffusion kinetics during coating growth. Specific aspects of the coating, namely the grain size, lattice constant and compressive stress, are seen to be influenced more by substrate bias than deposition temperature. In fact, it is possible to classify the deposited films as large grained (~ 15 nm) with a reduced lattice constant (~ 4.15 Å) and low compressive residual stresses for lower applied substrate biases, and as small grained (~ 4 nm) with an increased lattice constant (~ 4.25 Å) and high compressive residual stresses for applied biases of − 100 V or more. A good correlation between the residual stress and lattice constant under various deposition conditions is found. For the coatings deposited at − 100 V, and at temperatures above 573 K, the hardness could attain to the range of 32 to 35 GPa.Even after annealing in vacuum at 1173 K for 5 h, there is no notable change in the as-deposited phase, grain size or lattice constant of the coatings but an increase in hardness. The thermal stability of microstructure is considered to be a result of the high mixing entropy and sluggish diffusion of these multi-component coatings. For the anneal hardening it is proposed that the overall bonding between target elements and nitrogen is enhanced by thermal energy during annealing.  相似文献   

4.
Superhard nanostructured coatings, prepared by plasma-assisted chemical vapour deposition (PACVD) and physical vapour deposition (PAPVD) techniques, such as vacuum arc evaporation and magnetron sputtering, are receiving increasing attention due to their potential applications for wear protection. In this study nanocomposite (TiAl)BxNy (0.09 ≤ x ≤ 1.35; 1.07 ≤ y ≤ 2.30) coatings, consisting of nanocrystalline (Ti,Al)N and amorphous BN, were deposited onto Si (100), AISI 316 stainless steel and AISI M2 tool steel substrates by co-evaporation of Ti and hot isostatically pressed (HIPped) Ti-Al-B-N material from a thermionically enhanced twin crucible electron-beam (EB) evaporation source in an Ar plasma at 450 °C. The coating stoichiometry, relative phase composition, nanostructure and mechanical properties were determined using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), in combination with nanoindentation measurements. Aluminium (∼ 10 at.% in coatings) was found to substitute for titanium in the cubic TiN based structure. (Ti,Al)B0.14N1.12 and (Ti,Al)B0.45N1.37 coatings with average (Ti,Al)N grain sizes of 5-6 nm and either ∼ 70, or ∼ 90, mol% (Ti,Al)N showed hardness and elastic modulus values of ∼ 40 and ∼ 340 GPa, respectively. (Ti,Al)B0.14N1.12 coatings retained their ‘as-deposited’ mechanical properties for more than 90 months at room temperature in air, comparing results gathered from eight different nanoindentation systems. During vacuum annealing, all coatings examined exhibited structural stability to temperatures in excess of 900 °C, and revealed a moderate, but significant, increase in hardness. For (Ti,Al)B0.14N1.12 coatings the hardness increased from ∼ 40 to ∼ 45 GPa.  相似文献   

5.
Ti-Zr-N coatings were formed by the method of vacuum arc deposition using combined Ti and Zr plasma flows in a N2 atmosphere at different ratios of arc currents of Ti and Zr cathodes. After deposition, obtained samples were annealed in vacuum at the temperature of 850 °C. The element and phase composition, residual stresses and nanohardness were studied by Auger-Electron Spectroscopy, X-ray diffraction (XRD) and nanoindentation, respectively.XRD analysis reveals the formation of ternary Ti-Zr-N nitride coatings with the structure of solid solutions. It is shown that Ti-Zr-N coatings possess high hardness in comparison with TiN and ZrN binary nitrides. An increase in hardness is observed with increasing Zr content. However, it is established that after annealing coatings keep better stability of hardness with decrease of Zr content. The intrinsic stress in the as-deposited coatings is found to be largely compressive (− 4 GPa) and almost independent of Zr content, but much higher than in ZrN and TiN binary nitrides (− 2 GPa). After annealing, a significant stress relaxation is observed in all coatings due to relief of growth-induced point defects. Stress analysis on as-grown and annealed samples enabled us to determine the stress-free lattice parameter a0. This latter is expanded by ∼ 0.4-0.7% as compared to Vegard's law.The thermal stability of Ti-Zr-N coatings will be discussed in terms of evolution and interdependence between structure, composition and hardness after annealing.  相似文献   

6.
In this study, the porosity and the presence of discontinuities, such as cracks, in zinc phosphate coatings were evaluated by the voltametric anodic dissolution (VAD) method. Zinc phosphate (PZn), zinc phosphate with niobium (PZn + Nb), and zinc phosphate with ammonium niobium oxalate (Ox) and benzotriazole (PZn + Ox + BTAH) coatings deposited on SAE 1010 carbon steel were investigated. Coating porosity was evaluated by estimating the charge densities associated with the substrate passivation process for samples with a phosphate layer and comparing the results to the charge densities for passivation of the same substrate without a coating phosphate layer. Weight loss measurements, induced coupled plasma optical emission spectroscopy (ICP-OES), and scanning electron microscopy (SEM) were also used to investigate the solubility of the phosphate layers tested. The electrolytes used were four buffer solutions with pHs of 7.0, 8.0, 10, and 12. Scanning rates of 30, 50, 100, and 150 mV s− 1 were used in the VAD tests. The porosities of the PZn, PZn + Nb, and PZn + Ox + BTAH layers were estimated by VAD to be 4.35, 1.96, and 1.37%, respectively. The lower porosities of the PZn + Nb and PZn + Ox + BTAH layers are related to their morphologies, which promote better surface coverage compared to the PZn layer.  相似文献   

7.
The use of hard and superhard nanocomposite (nc) coatings with tailored functional properties is limited when applied to low alloy steel substrates due to their low load carrying capacity. Specifically in this work, in order to enhance the performance of martensitic SS410 substrates, we applied a duplex process which consisted of surface nitriding by radio-frequency plasma followed by the deposition of single layer (TiN, nc-TiN/a-SiNx or nc-TiCN/a-SiCN) or multilayer (TiN/nc-TiN/a-SiNx, TiN/nc-TiCN/a-SiCN) coating systems prepared by plasma enhanced chemical vapor deposition (PECVD). We show that plasma nitriding gives rise to a diffusion layer at the surface due to diffusion of nitrogen and formation of the α-Fe and ε-Fe2N phases, respectively, leading to a surface hardness, H, of 11.7 GPa, compared to H = 5 GPa for the untreated steel. Among the TiN, nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings, the latter one possesses the highest H value of 42 GPa and the highest H3/Er2 ratio of 0.83 GPa. Particularly, the TiN/nc-TiCN/a-SiCN multilayer coating system exhibits superior tribological properties compared to single layer TiN and multilayer TiN/nc-TiN/a-SiNx coatings: this includes excellent adhesion, low friction (Cf = 0.17) and low wear rate (K = 1.6 × 10− 7 mm3/N m). The latter one represents an improvement by a factor of 600 compared to the bare SS410 substrate. The significance of the relationship between the H/E and H3/Er2 ratios and the tribological performance of the nano-composite coatings is discussed.  相似文献   

8.
Titanium-magnesium nitride coatings (Ti,Mg)N were deposited on steels and silicon substrates by hybrid reactive arc evaporation-magnetron sputtering process from cathodic Ti and sputter Mg targets in an argon/nitrogen gas mixture. X-ray diffraction analyses (XRD) of as-deposited coatings with various Mg/Ti atomic ratios gave evidence of a fcc TiN-like structure strongly oriented in the [111] direction. The TiN lattice parameter increases with the addition of Mg resulting from the substitution of Ti atoms by Mg ones. Optical investigations by spectrophotometry revealed that Mg addition to TiN leads to a change in colour from golden through coppery and violet to grey. Nanoindentation measurements showed that increasing Mg content does not alter the hardness of coatings. As-deposited films were annealed in air from 450 to 750 °C with a 100 °C step. XRD and Raman analyses revealed the formation of rutile TiO2 and MgTiO3 phases. Secondary neutral mass spectrometry measurements were performed to study the elemental depth profiles after air annealing. A diffusion of Mg atoms towards the film surface was evidenced above 650 °C, leading to the formation of the MgTiO3 phase. However, thermogravimetric measurements showed that this oxide phase did not protect the films against high temperature oxidation. On the contrary, below 650 °C Mg affords to TiN a beneficial protective effect, able to reduce the oxidation kinetics by half.  相似文献   

9.
W–Ti–N sputtered coatings were tested in semi-industrial conditions by strip drawing to access their ability for sheet metal forming. Both laboratory and industrially developed coatings were tested. In a first part of the study the upscale of the deposition of the W–Ti–N coatings was achieved. The main difference between the two types of coatings was the evolution of the chemical composition with the N content. However, similar trends in the hardness and scratch-test results were encountered being the best compromise of these properties reached for ∼40 at.% N in the industrially deposited films against the 35 at.% N for laboratory deposited ones.  相似文献   

10.
The deformation mechanisms of a range of TiN coatings with different thicknesses, deposited on a V820 steel substrate following nanoindentation were characterized using focused ion beam (FIB) cross-sectioning and imaging, as well as cross-sectional transmission electron microscopy (TEM) of the indented region. Four TiN coatings were examined, including a cathodic arc evaporation (CAE) coating with a thickness of ∼ 0.7 μm and low voltage electron beam (LVEB) evaporation coatings with thicknesses of ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm. Based on a model developed by Xie et al., the intercolumnar shear stresses were calculated to be approximately 2.20, 3.05, 3.50 and 3.55 GPa in the ∼ 0.7, ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm thick TiN coatings respectively, that is, increasing as the coating thickness increases. Columnar cracking and shear steps at the coating/substrate interface were observed more frequently in the thinner TiN coatings indicated that these coatings deformed predominantly by shear along the columnar grain boundaries. In contrast, inclined cracking was the more dominant fracture type in the thicker TiN coatings. It is suggested that increased grain boundary strength occurs together with a lack of direct crack path along the grain boundaries through the thicker coatings due to the more equiaxed grain structure. Clearly, the grain structure and/or thickness of the TiN coating play a highly significant role in the deformation mechanisms.  相似文献   

11.
Multilayers of TiC/α-Al2O3 and TiN/κ-Al2O3, consisting of three (1 mm thick) alumina layers separated by thin TiC or TiN (∼20 nm thick) layers, have been deposited onto c- and r-surfaces of single crystals of α-Al2O3 by chemical vapour deposition (CVD). The aim of this paper is to describe and compare the detailed microstructure of the different multilayer coatings by using transmission electron microscopy (TEM).  相似文献   

12.
The unidirectional LAFAD dual-arc vapor plasma source yields 100% ionized metal vapor plasma flow and more than 50% ionized gaseous plasma in the coating chamber. The LAFAD technology deposits thick ceramic and cermet coatings with multi-elemental nanostructured architectures, nearly defect-free morphology and atomically smooth surfaces at high deposition rates. The productivity of one unidirectional LAFAD vapor plasma source integrated into an industrial-scale batch coating system ranges from 3-4 µm/h for nitride base coatings and up to 6 µm/h for oxi-ceramic coatings with good uniformity over large deposition areas, making it an attractive alternative to other PVD processes for a wide variety of applications. The 20 µm to 100 μm monolithic and Ti/TiN microlaminated LAFAD coatings exhibit low residual compressive stresses, i.e. < 1.5 GPa, resulting in exceptionally good adhesive and cohesive toughness. The fracture resistance of ultra-thick LAFAD coatings vs. coating architecture will be discussed.  相似文献   

13.
Hard and tough nanocomposite coatings consisting of hard TiN nanograins embedded in a soft metallic intergranular phase of Ni have been produced using ion beam assisted deposition. The chemical composition has been obtained by Rutherford Backscattering and the microstructural properties: phases, grain size, and texture of the coatings have been investigated by X-Ray Diffraction. In the composition range 0-22.5 at.% Ni, δ-TiN is the only crystalline phase and Ni appears as an X Ray amorphous phase. The hardness increases up to a maximum of 41 GPa at ~ 7 at.% Ni which corresponds to a TiN crystallite size of ~ 8 nm and a Ni intergranular phase thickness of roughly 1 monolayer. It is shown that the hardness enhancement in TiN-Ni nanocomposite coatings is not correlated with residual stresses, but rather with the intrinsic properties of the nanostructure. An important improvement in wear resistance is obtained for the coatings exhibiting the highest toughness and not the highest hardness. These results show that ion assisted processing is an effective tool for producing dense TiN-Ni nanocomposite coatings and tailoring their structure and mechanical properties.  相似文献   

14.
Ternary transition-metal boron nitride Ti-B-N offers outstanding hardness and thermal stability, which are increasingly required for wear resistant applications, as the protective coatings are subjected to high temperature, causing thermal fatigue. Ti-B-N coatings with chemical compositions close to the quasibinary TiN-TiB2 tie line and boron contents below ∼ 18 at.% contain a crystalline supersaturated NaCl structure phase, where B substitutes for N. Annealing above the deposition temperature causes precipitation of TiB2, which influence dislocation mobility and hence the hardness of TiB0.40N0.83 remains at a very high level of ∼ 43 GPa with annealing temperature Ta up to 900 °C. Growth of Ti-B-N coatings with B contents above ∼ 18 at.% results in the formation of nm sized TiN and TiB2 crystallites embedded in a high volume fraction of disordered boundary layer. The compaction of this disordered phase during annealing results in a hardness increase of TiB0.80N0.83 coatings from the as-deposited value of ∼ 37 GPa to ∼ 42 GPa at Ta = 800 °C. Excess B during growth of TiB2.4 coatings causes the formation of bundles of ∼ 5 nm wide TiB2 subcolumns encapsulated in a B-rich tissue phase. This nanocolumnar structure is thermally stable up to temperatures of ∼ 900 °C, and consequently the hardness remains at the very high level of ~ 48 GPa, as nucleation and growth of dislocations is inhibited by the nm sized columns. Furthermore, the high cohesive strength of the B-rich tissue phase prevents grain boundary sliding.  相似文献   

15.
The aim of this work is to illuminate the influence of two widely applied target types, i.e. TiAl compound targets produced by powder metallurgy and mosaic TiAl targets, on the sputter deposition process as well as on the structure and properties of the obtained coatings. After development of a sputter process for the compound targets by optimization of cathode power and nitrogen partial pressure, this process was compared to the commercially applied mosaic target process by taking into account the sputter yields of Ti and Al and the respective deposition rates. The deposition rate achieved with the compound targets was ~ 44% higher than that obtained for the mosaic targets. The Al content in the coatings deposited from the compound targets was slightly higher and the domain size of the formed cubic Ti1 − xAlxN solid solution considerably larger than for the coatings deposited from the mosaic targets. The coatings grown from the compound targets showed, in contrast to those synthesized from the mosaic targets, tensile stresses. While the hardness of the coatings sputtered from the compound targets was slightly below that of the coatings synthesized from the mosaic targets, both their friction and wear behavior were slightly improved. In summary, it could be shown that using compound TiAl targets manufactured by powder metallurgy, Ti1 − xAlxN coatings with mechanical and tribological properties comparable to those grown from commercially applied mosaic targets can be deposited at significantly higher growth rates.  相似文献   

16.
Hybrid sol-gel coatings derived from a base catalyzed hydrolysis of tetraethylorthosilicate and methyltriethoxysilane were deposited on aluminum substrates by a dip coating technique. Some of the coatings were deposited on substrates whose surfaces were pre-treated using atmospheric-air plasma prior to coating in order to study the effect of surface activation by plasma pre-treatment. The coated substrates were heat treated in different ambiences like air, flowing N2 and vacuum to see the effect of heat treatment ambience on the properties of the coatings. Characterization of the coatings after heat treatment was carried out with respect to coating thickness, pencil scratch hardness, adhesion, water contact angle and their microstructure. Corrosion testing for all the coatings was carried out by electrochemical polarization measurements as well as electrochemical impedance spectroscopy in 3.5% NaCl solution for 1 h exposure time to investigate on their corrosion resistance. Coating thicknesses ranging from 1 μm-5 μm were obtained by varying the withdrawal speeds. Heat treatment in a controlled atmosphere with low oxygen content was seen to improve the hydrophobicity of coated surface, as measured by water contact angles (20o — air; 71o — N2; 95o — vacuum), thereby improving the corrosion resistance. Surface pre-treatment using open-air plasma was seen to improve the adhesion of the sol-gel coatings thus making it possible to obtain adherent and thick coatings in a single dip coating process. Both the methods of processing the coatings reduced the corrosion rate of aluminum from 1.95 mpy to 0.004 mpy in case of coatings densified in nitrogen and to 0.00068 mpy for coatings deposited on a plasma treated substrate and densified in air.  相似文献   

17.
To enhance the mechanical properties of TiN coating on magnesium alloy, metal vapor vacuum arc (MEVVA) ion implantation was performed to modify magnesium alloy substrate before TiN film deposition. Implantation energy was fixed at 45 keV and dose was at 9 × 1017 cm− 2. TiN coatings were deposited by magnetically filtered vacuum-arc plasma source on unimplanted and implanted substrate. The microstructure composition distribution and phase structure were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical states of some typical elements of the TiN coating were analyzed by means of X-ray photoelectron spectroscopy (XPS). The properties of corrosion resistance of TiN coatings were studied by CS300P electrochemical-corrosion workstation, and the mechanism of the corrosion resistance was also discussed.  相似文献   

18.
Density, hardness and compressive stress of tungsten contained in an amorphous-hydrogenated-carbon matrix (W-C:H) have been studied as a function of composition and bias voltage. W-C:H coatings were deposited by reactive sputter deposition from a tungsten-carbide (WC) target on silicon substrate in an argon-acetylene plasma. W-C:H coatings obtained at different acetylene flow rates and substrate bias voltages, were characterized by scanning electron microscopy, X-ray diffraction, nanoindentation and substrate curvature method. It has been observed that compressive stress, hardness and reduced Young's modulus decrease when the acetylene flow is increased from 0 to 10 sccm. Also, compressive stress and hardness increases with the substrate bias voltage. In particular, for W-C:H coatings obtained at 5 sccm of acetylene flow, the compressive stress and hardness increase from − 1.6 GPa to − 3.2 GPa and from 19 GPa to 24 GPa, respectively, when increasing the substrate bias from 0 to 200 V. The variation of the internal stress, hardness and density of the coatings is discussed in terms of composition and structure of the W-C:H coatings.  相似文献   

19.
20.
Low Zr (S1) and high Zr (S2) quaternary Cr–Zr–(Al–)N coatings with increasing Al content were deposited by d.c. reactive magnetron sputtering. The structure, fracture cross-section morphology and mechanical properties of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nanoindentation, scratch testing and Vickers micro-indentation testing. All the coatings present an fcc NaCl-type B1 structure; in the low Zr content coatings, the diffraction peaks shift towards higher angles as the Al content increases. The grain size is approximately constant in a range from 6 to 8 nm, except for high Zr content films where a significant decrease in crystalline order is observed (grain size ~ 2.5 nm). In both series, the microstructure changed from equiaxed to columnar with increasing Al content. The highest hardness and strongest adhesion values were achieved in coatings with lower Zr and Al content. Conversely, the coatings with high Zr and the highest Al content exhibited an abrupt decrease in hardness, adhesion strength and toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号