首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper analyzes the mobility and stiffness of a three-prismatic-revolute-cylindrical (3-PRC) translational parallel manipulator (TPM). Firstly, the original 3-PRC TPM is converted into a non-overconstrained manipulator since there exist some practical problems for the overconstrained mechanism. By resorting to the screw theory, it is demonstrated that the conversion brings no influences to the mobility and kinematics of the manipulator. Secondly, the stiffness matrix is derived intuitively via an alternative approach based upon screw theory with the consideration of actuations and constraints, and the compliances subject to both actuators and legs are taken into account to establish the stiffness model. Furthermore, the stiffness performance of the manipulator is evaluated by utilizing the extremum stiffness values over the usable workspace, and the influences of design parameters on stiffness properties are presented, which will be helpful for the architecture design of the TPM.  相似文献   

2.
In this work the jerk analysis of a 3-RRPS parallel manipulator to realize six degrees of freedom is approached by means of the theory of screws. The input/output equations of velocity, acceleration and jerk of the moving platform with respect to the fixed platform are obtained systematically by resorting to reciprocal-screw theory. A numerical example is included in order to show the application of the method of kinematic analysis. Furthermore, the numerical results obtained via screw theory are satisfactorily compared with simulations generated with the aid of commercially available software.  相似文献   

3.
Kinematic analysis of a 3-PRS parallel manipulator   总被引:5,自引:0,他引:5  
Although the current 3-PRS parallel manipulators have different methods on the arrangement of actuators, they may be considered as the same kind of mechanism since they can be treated with the same kinematic algorithm. A 3-PRS parallel manipulator with adjustable layout angle of actuators has been proposed in this paper. The key issues of how the kinematic characteristics in terms of workspace and dexterity vary with differences in the arrangement of actuators are investigated in detail. The mobility of the manipulator is analyzed by resorting to reciprocal screw theory. Then the inverse, forward, and velocity kinematics problems are solved, which can be applied to a 3-PRS parallel manipulator regardless of the arrangement of actuators. The reachable workspace features and dexterity characteristics including kinematic manipulability and global dexterity index are derived by the changing of layout angle of actuators. Simulation results illustrate that different tasks should be taken into consideration when the layout angles of actuators of a 3-PRS parallel manipulator are designed.  相似文献   

4.
The objective of the research project was to design and construct a 3DOF tripod-type electro-pneumatic parallel manipulator that could be used for pick-and-place tasks in municipal waste recycling facilities. The fundamental requirement was that the manipulator be simple and cheap to construct, operate and maintain as well as robust and resistant to damage. The forward and inverse kinematic problem as well as working space and strength analysis issues were used for construction of manipulator. The prototype was tested using different payloads and velocities to establish its positioning accuracy and repeatability. The robot behavior was controlled with a commercially available industrial controller, which was reported insufficient for point-to-point operations required during solid waste handling. Conclusions have been drawn on how to optimize the robot structure and control.  相似文献   

5.
6.
In this paper, the kinematics and statics of a 2SPS+UPR parallel manipulator are studied systematically. First, its simulation mechanism is created, and formulae for solving the inverse/forward displacement kinematics are derived. Second, formulae for solving inverse/forward velocity and active/constrained forces are derived. Third, formulae for solving inverse/forward acceleration are derived, and a workspace is analysed. The analytic results are verified by its simulation mechanism. The authors would like to acknowledge the financial support of the Natural Sciences Foundation Council of China (NSFC) 50575198 and of Doctoral Fund from National Education Ministry of China No. 20060216006.  相似文献   

7.
Kinematic analysis is one of the key issues in the research domain of parallel kinematic manipulators. It includes inverse kinematics and forward kinematics. Contrary to a serial manipulator, the inverse kinematics of a parallel manipulator is usually simple and straightforward. However, forward kinematic mapping of a parallel manipulator involves highly coupled nonlinear equations. Therefore, it is more difficult to solve the forward kinematics problem of parallel robots. In this paper, a novel three degrees-of-freedom (DOFs) actuation redundant parallel manipulator is introduced. Different intelligent approaches, which include the Multilayer Perceptron (MLP) neural network, Radial Basis Functions (RBF) neural network, and Support Vector Machine (SVM), are applied to investigate the forward kinematic problem of the robot. Simulation is conducted and the accuracy of the models set up by the different methods is compared in detail. The advantages and the disadvantages of each method are analyzed. It is concluded that ν-SVM with a linear kernel function has the best performance to estimate the forward kinematic mapping of a parallel manipulator.  相似文献   

8.
Redundant actuation can improve the performance and ability of parallel manipulator. In order to deal with coordination and distribution of the driving force of the parallel manipulator with redundant actuation and to realize the control strategy based on dynamics, on the basis of the original 5UPS/PRPU parallel manipulator, it increases a drive for the middle PRPU passive constraint branch to make it a redundant actuation branch. It introduces configurations’ redundant types and compositions of 5UPS/PRPU parallel manipulator with redundant actuation, illustrates that the mechanism is redundant actuation from the perspective of degree of freedom and establishes a dynamic model based on Lagrangian method. On the basis of the weighted optimization principle of driving torque, it optimizes the driving torque of the parallel manipulator and calculates the driving force of the redundant driving chain with cutting force. It carries out the simulation by using ADAMS software and proves validity of dynamic model. Finally it detects the dynamic performance of the parallel manipulator by processing experiment of parallel manipulator with redundant actuation and its non-redundant counterpart.  相似文献   

9.
A novel 5-DoF parallel manipulator (PM) with two composite rotational/linear active legs is proposed and its kinematics and statics are studied systematically. First, a prototype of this PM is constructed and its displacement is analyzed. Second, the formulas are derived for solving the linear/angular velocity and acceleration of UPS composite active leg. Third, the Jacobian and Hessian matrices are derived and formulas for solving the velocity, statics and acceleration of this PM are derived. Third, a reachable work space is constructed using a CAD variation geometric approach. Finally, the kinematics and statics of this PM are illustrated and solved. The solved results are verified by the simulation results.  相似文献   

10.
This paper deals with the dynamics and control of a novel 3-degrees-of-freedom (DOF) parallel manipulator with actuation redundancy. According to the kinematics of the redundant manipulator, the inverse dynamic equation is formulated in the task space by using the Lagrangian formalism, and the driving force is optimized by utilizing the minimal 2-norm method. Based on the dynamic model, a synchronized sliding mode control scheme based on contour error is proposed to implement accurate motion tracking control. Additionally, an adaptive method is introduced to approximate the lumped uncertainty of the system and provide a chattering-free control. The simulation results indicate the effectiveness of the proposed approaches and demonstrate the satisfactory tracking performance compared to the conventional controller in the presence of the parameter uncertainties and un-modelled dynamics for the motion control of manipulators.  相似文献   

11.
《Robotics and Computer》2014,30(2):99-106
This paper presents a case study on a reconfigurable hybrid parallel robot dubbed ReSl-Bot. It addresses the realm of reconfigurable 6-DOF parallel mechanisms, for sustainable manufacturing. It also features a self-reconfigurable architecture. A systematic analysis involving kinematics, constant orientation workspace, singularity and stiffness is developed in detail. Interesting features are discussed, revealing some unique characteristics of the studied architecture. A multi-objective optimization procedure is also carried out with weighted stiffness, dexterity and workspace volume as the performance indices.  相似文献   

12.
In this paper, a planar 2-DOF parallel manipulator with actuation redundancy is proposed and the optimal design considering kinematics and natural frequency is presented. The stiffness matrix and mass matrix are derived, and the structural dynamics is modeled. The natural frequency is obtained on the basis of dynamic model. Based on the kinematic performance, the range for link length is given. Then, considering the natural frequency, the geometry is optimized. The natural frequency is simulated and compared with the corresponding non-redundant parallel manipulator. The designed redundant parallel manipulator has desired kinematic performance and natural frequency and is incorporated into a 4-DOF hybrid machine tool.  相似文献   

13.
This paper investigates the stiffness and natural frequency of a 3-DOF parallel manipulator with consideration of additional leg candidates. The stiffness model and natural frequency are derived, and then the stiffness and natural frequency of the manipulators are compared. The simulations show that the stiffness and natural frequency of the parallel manipulator with one or two additional legs are higher than those of the manipulator without additional leg. The stiffness performance and natural frequency of the manipulator with one additional leg can only be improved little by adding the second additional leg. It is better to develop this parallel manipulator by adding only one additional leg to construct a symmetrical architecture.  相似文献   

14.
This paper deals with the dynamic modeling and design optimization of a three Degree-of-Freedom spherical parallel manipulator. Using the method of Lagrange multipliers, the equations of motion of the manipulator are derived by considering its motion characteristics, namely, all the components rotating about the center of rotation. Using the derived dynamic model, a multiobjective optimization problem is formulated to optimize the structural and geometric parameters of the spherical parallel manipulator. The proposed approach is illustrated with the design optimization of an unlimited-roll spherical parallel manipulator with a main objective to minimize the mechanism mass in order to enhance both kinematic and dynamic performances.  相似文献   

15.
A new robust nonlinear controller is presented and applied to a planar 2-DOF parallel manipulator with redundant actuation. The robust nonlinear controller is designed by combining the nonlinear PD (NPD) control with the robust dynamics compensation. The NPD control is used to eliminate the trajectory disturbances, unmodeled dynamics and nonlinear friction, and the robust control is used to restrain the model uncertainties of the parallel manipulator. The proposed controller is proven to guarantee the uniform ultimate boundedness of the closed-loop system by the Lyapunov theory. The trajectory tracking experiment with the robust nonlinear controller is implemented on an actual planar 2-DOF parallel manipulator with redundant actuation. The experimental results are compared with the augmented PD (APD) controller, and the proposed controller shows much better trajectory tracking accuracy.  相似文献   

16.
This paper investigates the problems of kinematics, Jacobian, singularity and workspace analysis of a spatial type of 3-PSP parallel manipulator. First, structure and motion variables of the robot are addressed. Two operational modes, non-pure translational and coupled mixed-type are considered. Two inverse kinematics solutions, an analytical and a numerical, for the two operational modes are presented. The direct kinematics of the robot is also solved utilizing a new geometrical approach. It is shown, unlike most parallel robots, the direct kinematics problem of this robot has a unique solution. Next, analytical expressions for the velocity and acceleration relations are derived in invariant form. Auxiliary vectors are introduced to eliminate passive velocity and acceleration vectors. The three types of conventional singularities are analyzed. The notion of non-pure rotational and non-pure translational Jacobian matrices is introduced. The non-pure rotational and non-pure translational Jacobian matrices are combined to form the Jacobian of constraint matrix which is then used to obtain the constraint singularity. Finally, two methods, a discretization method and one based on direct kinematics are presented and robot non-pure translation and coupled mixed-type reachable workspaces are obtained. The influence of tool length on workspace is also studied.  相似文献   

17.
This paper proposes an innovative design for a parallel manipulator that can be applied to a machine tool. The proposed parallel manipulator has three degrees of freedom (DOFs), including the rotations of a moving platform about the x and y axes and a translation of this platform along the z-axis. A passive link is introduced into this new parallel manipulator in order to increase the stiffness of the system and eliminate any unexpected motion. Both direct and inverse kinematic problems are investigated, and a dynamic model using a Newton–Euler approach is implemented. The global system stiffness of the proposed parallel manipulator, which considers the compliance of links and joints, is formulated and the kinetostatic analysis is conducted. Finally, a case study is presented to demonstrate the applications of the kinematic and dynamic models and to verify the concept of the new design.  相似文献   

18.
Driven by the requirements of the large-scale component assemblage for the docking platform, this paper proposes a novel one-translational-three-rotational (1T3R) parallel manipulator with an articulated travelling plate, which can provide high stiffness and good accuracy performances in the assemblage. The underlying architecture of this manipulator is briefly addressed with emphasis on the practical realization of the articulated travelling plate. On the basis of the kinematic analysis of the 1T3R parallel manipulator, its optimal design considering the force and motion transmissibility is carried out, in which the generalized virtual power transmissibility of this manipulator is defined. This paper aims at laying a solid theoretical and technical foundation for the prototype design and manufacture of the 1T3R parallel manipulator.  相似文献   

19.
Two types of kinematic calibration method for a 2-DOF (degrees of freedom) translational parallel manipulator are proposed using different error models. A calibration experiment is performed on both methods using an Absolute Laser Tracker and the results are compared. Two error models of the 2-DOF translational parallel manipulator are established using differential method and linear perturbation method, respectively. The two error models are solved using both the least squares method and linear equations. The results for the two different calibration methods show that the error model based on differential method is more effective in improving the accuracy of the 2-DOF translational parallel manipulator. Overall, the absolute position error of the 2-DOF translational parallel manipulator is significantly reduced to 0.13?mm from 0.93?mm after kinematic calibration.  相似文献   

20.
In this paper, based on the conventional Newton–Euler approach, a simplification method is proposed to derive the dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Closed-form solutions are developed for the inverse kinematics. Based on the kinematics, the Newton–Euler approach in simplification form is used to derive the inverse dynamic model of the redundant parallel manipulator. Then, the driving force optimization is performed by minimizing an objective function which is the square of the sum of four driving forces. The dynamic simulations are done for the parallel manipulator with both the redundant and non-redundant actuations. The result shows that the dynamic characteristics of the manipulator in the redundant case are better than that in the non-redundancy. The redundantly actuated parallel manipulator was incorporated into a 4-DOF hybrid machine tool which includes a feed worktable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号