首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The activity and optimum condition of metal-loaded activated carbon catalyst (Me/AC) for oxalic acid (OA) ozonation were evaluated. Results showed that Fe-loaded activated carbon (Fe/AC) showed better activity in five kinds of Me/AC catalysts prepared by a dipping method. Fe catalyst, crystallizing as γ-Fe2O3, dispersed well on AC surface. Fe2O3/AC, with 1.12% Fe weight ratio and 450°C calcination temperature and showed better activity for OA ozonation. 89.2% of OA was removed in the Fe2O3/AC/O3 process, which was higher than those in AC/O3 (79.6%) and O3 (3.2%) processes. The calcination process helped to promote adsorption capability and catalytic activity of AC. In addition, Surface hydroxyl groups played a key role in Fe2O3/AC’s catalytic activity. Acidic condition was more favorable for OA removal in the Fe2O3/AC/O3 process. A hydroxyl radical (?OH) oxidation mechanism was proven in Fe2O3/AC/O3. The catalytic activity of Fe2O3/AC remained satisfactory after several cycles, indicating that Fe2O3/AC had a good reusability property.  相似文献   

2.
The stability and the activity of Fe2O3/Cr2O3 and ZnO/Cr2O3 catalysts were examined for a reverse-watergas-shift reaction (RWReaction). The initial activities of those catalysts were quite high so that the conversion reached close to equilibrium. The activity of Fe2O3/Cr2O3 catalyst decreased from 33.5 to 29.8% during the RWReaction for 75 h at 873 K with GHSV (ml/gcat · h) of 100,000. Moreover, the coke formation on the Fe2O3/Cr2O3 catalyst caused clogging in the RWReactor of the CAMERE process. On the other hand, the ZnO/Cr2O3 catalyst showed no coke formation and no deactivation for the RWReaction at 873 K with GHSV (ml/gcat · h) of 150,000. The ZnO/Cr2O3 was a good catalyst for the RWReaction of the CAMERE process.  相似文献   

3.
A statistical optimization of tartrazine dye removal process from aqueous solution by heterogeneous photo–Fenton process using Fe2O3-supported ZSM-5 catalyst was performed. ZSM-5 support was prepared by chitin-templating technique to obtain a mesoporous structure. Thereafter, Fe2O3 was supported on ZSM-5 through wet impregnation method. This material was characterized by different techniques and posteriorly evaluated as a catalyst for the removal of tartrazine from aqueous solution. A central composite rotational design coupled with response surface methodology approach was used to evaluate the influence of different reaction conditions on the decolorization of a solution containing tartrazine and to obtain the optimum conditions. Under the optimum experimental conditions of dye decolorization, a mineralization experiment was conducted through analysis of total organic carbon. In these conditions, 95% of decolorization was achieved at 30?min of reaction and a significant mineralization of 80% was observed at 180?min. Therefore, the photo-Fenton process using Fe2O3-supported ZSM-5 prepared by chitin-templating was proved to be feasible for both the decolorization and mineralization of tartrazine in aqueous solution.  相似文献   

4.
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.  相似文献   

5.
Xiurong Ren  Fan Li  Kechang Xie 《Fuel》2010,89(4):883-887
Iron-based sorbent was preferable for desulfurization from coal-derived gas due to economic consideration and favorable dynamic property. The intrinsic behavior of Fe-based sorbent should be primarily understood in the sulfidation process for improving its performance. A series of tests were carried out with Fe2O3, Fe and other compounds containing-Fe (FO) made from the same precursor FeC2O4·2H2O in H2S-N2 mixture in this study. The formation of H2 was observed with Fe and FO as sorbents. While SO2 was detected with FO and Fe2O3 as sorbents, its concentration in outlet was gradually decreased. The crystal phase and surface chemical state of fresh and sulfided Fe2O3 with different reaction times were characterized by XRD and XPS measurements. The result suggested that the intrinsic H2S removal by Fe2O3 would produce multi-phase of sulfides. The possible mechanism of sulfidation reaction was discussed.  相似文献   

6.
Different morphologies of vanadium pentoxide (V2O5) from 1D to 3D, including nanospheres, nanowires, urchin-like and flower-like nanostructures, have been synthetized by a simple hydrothermal method. Some parameters, such as the reaction temperature, the volume of polyvinyl pyrrolidone (PVP) and possible formation mechanisms of different V2O5 nanostructures were discussed. The results demonstrate that PVP and the reaction temperature play a critical role on the morphology of vanadium pentoxide.  相似文献   

7.
A novel sonochemical method is described for the preparation of Fe3O4–TiO2 photocatalysts in which nanocrystalline titanium dioxide particles are directly coated onto a magnetic core. The Fe3O4 nanoparticles were partially embedded in TiO2 agglomerates. TiO2 nanocrystallites were obtained by hydrolysis and condensation of titanium tetraisopropyl in the presence of ethanol and water under high-intensity ultrasound irradiation. This method is attractive since it eliminated the high-temperature heat treatment required in the conventional sol–gel method, which is important in transforming amorphous titanium dioxide into a photoactive crystalline phase. In comparison to other methods, the developed method is simple, mild, green and efficient. The magnetization hysteresis loop for Fe3O4–TiO2 nanocomposites indicates that the hybrid catalyst shows superparamagnetic characteristics at room temperature. Photocatalytic activity studies confirmed that the as-prepared nanocomposites have high photocatalytic ability toward the photodegradation of RhB solution. Furthermore, the photodecomposition rate decreases only slightly after six cycles of the photocatalysis experiment. Thus, these Fe3O4–TiO2 nanocomposites can be served as an effective and conveniently recyclable photocatalyst.  相似文献   

8.
A novel Fe2O3-MoS2 nanocomposite was synthesized directly via the solvothermal method. Scanning electron microscopy (SEM) results showed the as-prepared Fe2O3-MoS2 had a uniform 3D blooming flower-like nanostructure with a MoS2 substrate. The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirmed the Fe2O3 nanostructures were well-dispersed on the surface of the layered MoS2. The elemental mapping results revealed Fe, O, Mo and S elements coexisted in the Fe2O3-MoS2 nanocomposite. X-ray photoelectron spectroscopy (XPS) results displayed an S-rich MoS2 structure had been formed in the Fe2O3-MoS2 nanocomposite. As expected, the S-rich Fe2O3-MoS2 nanocomposite had better photocatalytic performance on Cr(VI) reduction than that of bare Fe2O3, MoS2 and TiO2 P25.  相似文献   

9.
We report here a simple, efficient, practical, and novel method for the preparation of Fe3O4 nanoparticles (NPs)/CdS nanowires. The CdS nanowire/Fe3O4 NP reported here was characterized by transmission electron microscopy (TEM), X-ray Diffraction (XRD), vibrating sample magnetometer (VSM), and energy-dispersive X-ray. Cadmium diethyl dithiophosphate has been used as a 3 in 1 precursor (cadmium, sulfur, and ligand source) for the synthesis of high-quality one-dimensional Fe3O4 NPs/CdS nanowires using a simple hydrothermal method in the presence of Fe3O4 NPs in water. Photocatalytic activity studies show that the nanocomposite has good photocatalytic activity toward the photodegradation of methylene blue in an aqueous solution.  相似文献   

10.
A Co3O4/Fe2O3 composite nanofiber-based solar photocatalyst has been prepared, and its catalytic performance was evaluated by degrading acridine orange (AO) and brilliant cresyl blue (BCB) beneath solar light. The morphological and physiochemical structure of the synthesized solar photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). FESEM indicates that the Co3O4/Fe2O3 composite has fiber-like nanostructures with an average diameter of approximately 20 nm. These nanofibers are made of aggregated nanoparticles having approximately 8.0 nm of average diameter. The optical properties were examined by UV-visible spectrophotometry, and the band gap of the solar photocatalyst was found to be 2.12 eV. The as-grown solar photocatalyst exhibited high catalytic degradation in a short time by applying to degrade AO and BCB. The pH had an effect on the catalytic performance of the as-grown solar photocatalyst, and it was found that the synthesized solar photocatalyst is more efficient at high pH. The kinetics study of both AO and BCB degradation indicates that the as-grown nanocatalyst would be a talented and efficient solar photocatalyst for the removal of hazardous and toxic organic materials.  相似文献   

11.
To facilitate the recovery of Pb/SiO2 catalyst, magnetic Pb/Fe3O4/SiO2 samples were prepared separately by emulsification, sol-gel and incipient impregnation methods. The catalyst samples were characterized by means of X-ray diffraction and N2 adsorption-desorption, and their catalytic activity was investigated in the reaction for synthesizing propylene carbonate from urea and 1,2-propylene glycol. When the gelatin was applied in the preparation of Fe3O4 at 60°C and the pH value was controlled at 4 in the preparation of Fe3O4/SiO2, the Pb/Fe3O4/SiO2 sample shows good catalytic activity and magnetism. Under the reaction conditions of a reaction temperature of 180°C, reaction time of 2 h, catalyst percentage of 1.7 wt-% and a molar ratio of urea to PG of 1:4, the yield of propylene carbonate attained was 87.7%.  相似文献   

12.
Shape-controlled silver nanoparticles (Ag NPs) were prepared in a well-dispersed mode on the active imprinting sites of chitosan-TiO2 adsorbent (CTA) by means of bioaffinity adsorption and TiO2 photocatalysis. Nontoxic hydrogen peroxide (H2O2) was used as a suitable etching reagent in our production of shape-controlled Ag NPs, since it could regulate the TiO2 photocatalysis and accelerate the generation of O2. With the same amount of H2O2 addition, silver nanocubes, nanospheres and truncated triangular nanoplates were individually obtained on the surface of CTA under UV irradiation by facilely adjusting the initial Ag+ concentration. The FE-SEM, XRD and UV-visible characterizations confirmed single crystal Ag NPs with different shapes loaded on CTA. The mechanism for the formation of shape-controlled Ag NPs was discussed based on a photocatalytic reaction system. As an example of applications of the Ag NPs, we tested the biocidal properties, and silver nanocubes exhibited the highest antibacterial activity. Our research provided a simple synthesis for shape-regulated Ag NPs steadily loaded on CTA. It might moreover be a guide in preparing metal nanocrystals monodispersely immobilized on chemical substrates.  相似文献   

13.
The oxidative dehydrogenation of 4-vinylcyclohexene (VCH) into styrene was carried out in the presence of oxygen over a ZrO2 catalyst promoted with Fe2O3 and CaO. Intrinsically, ZrO2 showed high dehydrogenation activity, which resulted in 80% styrene selectivity with 45% conversion at 425 °C and LHSV 3 h−1. When the ZrO2 was further promoted with calcium and iron, CaO/Fe2O3/ZrO2, the highest styrene selectivity of 88.9% was obtained as well as the lowest deactivation. The deactivation of catalyst was prohibited properly through the introduction of oxygen in the reactant together with the modification of Fe2O3/ZrO2 with CaO. The CaO/Fe2O3/ZrO2 showed constant catalytic activity and selectivity for more than 50 h without deactivation. The selectivity of styrene was strongly influenced by the mole ratio of O2/VCH and 95% selectivity with 80% conversion was obtained at O2/VCH mole ratio of 6 over Fe2O3/ZrO2. It is thought that the oxidative dehydrogenation proceeds through the dehydrogenation (DH) of ring-hydrocarbon of VCH followed by selective combustion of hydrogen (SHC) and the high selectivity of styrene was achieved by the bi-functional role of ZrO2 for DH and SHC reactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Herein, the authors report the synthesis of electro-magnetic polyfuran/Fe3O4 nanocomposites using Fe3O4 magnetic nanoparticles of different content as nucleation sites via in situ chemical oxidation polymerization method. Surface, structural, morphological, thermal, electrical and magnetic properties of the nanocomposites were studied by FT-IR, UV-visible spectroscopies, XRD, FESEM, TGA, four probe, and VSM, respectively. The effect of Fe3O4 nanoparticles content on the electrical conductivity and magnetization of nanocomposites was studied. The obtained polyfuran and polyfuran/Fe3O4 nanocomposites were analyzed for their antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In addition, polyfuran/Fe3O4 nanocomposites have been investigated for application as electrochemical biosensor.  相似文献   

15.
The iron vanadate, FeVO4, was prepared and characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM). It was found that FeVO4 could effectively catalyze H2O2 to generate active hydroxyl radical OH, which was confirmed with electron spin resonance (ESR) spin-trapping technique. Therefore, it was employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the degradation efficiency of Orange II. Compared with the conventional heterogeneous Fenton-like catalysts, α-Fe2O3, Fe3O4 and γ-FeOOH, FeVO4 possessed a much higher catalytic activity. The high catalytic activity possibly involved in a special two-way Fenton-like mechanism, that is, the activation of H2O2 by both Fe(III) and V(V) in FeVO4. Moreover, FeVO4 possessed a wide applicable pH range and its catalytic activity was slightly affected by the solution pH values in the range of 3–8.  相似文献   

16.
Fe2O3 is a promising oxygen carrier for hydrogen production in the chemical-looping process. A set of kinetic studies on reduction with CH4, CO and H2 respectively, oxidation with water and oxygen containing Ar for chemical-looping hydrogen production was conducted. Fe2O3 (20 wt.%)/ZrO2 was prepared by a co-precipitation method. The main variables in the TGA (thermogravimetric analyzer) experiment were temperatures and gas concentrations. The reaction kinetics parameters were estimated based on the experimental data. In the reduction by CH4, CO and H2, the reaction rate changed near FeO. Changes in the reaction rate due to phase transformation were observed at low temperature and low gas concentration during the reduction by CH4, but the phenomenon was not remarkable for the reduction by CO and H2. The reduction rate achieved using CO and H2 was relatively faster than achieved using CH4. The Hancock and Sharp method of comparing the kinetics of isothermal solid-state reactions was applied. A phase boundary controlled model (contacting sphere) was applied to the reduction of Fe2O3 to FeO by CH4, and a different phase boundary controlled model (contacting infinite slab) was fit well to the reduction of FeO to Fe by CH4. The reduction of Fe2O3 to Fe by CO and H2 can be described by the former phase boundary controlled model (contacting sphere). This phase boundary controlled model (contacting sphere) also fit well for the oxidation of Fe to Fe3O4 by water and FeO to Fe2O3 by oxygen containing Ar. These kinetics data could be used to design chemical-looping hydrogen production systems.  相似文献   

17.
Fe-based materials, Fe2O3, Fe3O4, and FeOOH, were synthesized by the microwave–hydrothermal process in the temperature range of 100–200 °C and under very short reaction times of 15 min to 2 h. Under microwave-controlled hydrolysis and redox reactions, cube-like Fe2O3 was crystallized using FeCl3, Fe3O4 particles were crystallized from FeCl2 and FeOOH nanorods were crystallized using FeCl3. The Fe-based materials were fabricated to make anodes and cathodes of lithium-ion battery and supercapacitor electrode materials to study their potential electrochemical applications. The electrochemical results showed that FeOOH had better anode capacity as lithium-ion batteries than those of Fe2O3 and Fe3O4. The present results suggest that the microwave–hydrothermally synthesized Fe-based materials are promising lithium-ion battery anode materials.  相似文献   

18.
The performance of carbon fiber-reinforced composites largely depends on the properties of the fiber-matrix interface. Here, to improve the interfacial strength properties of carbon fiber/epoxy composites, we doped different concentrations of Fe2O3/graphene nanosheets onto the interfacial region of the carbon fiber composites by nano-coating technology. With the aid of the magnetic field, the arrangement of nanosheets could be controlled in the interface. The nanosheets can be arranged on the carbon fiber surface parallel or perpendicularly with different concentrations. The tensile strength and interfacial shear strength of the modified fiber microcomposites had increased by 22.1 and 44.4% respectively with 1.0 mg/mL Fe2O3/graphene nanosheets. The results indicated that the Fe2O3/graphene nanosheets have an important influence on the carbon fibers and carbon fibers composites.  相似文献   

19.
(3-Aminopropyl)-triethoxysilane attached to Fe3O4@SiO2 nanoparticles has been characterized by powder X-ray diffraction, vibrating sample magnetometer, scanning electronic microscope, transmission electron microscope, energy dispersive X-ray, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. The prepared nanoparticles employed as a heterogeneous catalyst in the synthesis of spirooxindoles derivatives in one-pot four-component reactions of isatin, methyl cyanoacetate or malononitrile, hydrazine hydrate, and ethyl acetoacetate. Amino-functionalized magnetic nanoparticles showed high catalytic activity in mild reaction conditions and excellent yields of products in short reaction times. Also, this nanocatalyst can be easily recovered by a magnet and reused for subsequent reactions for at least 5 times without noticeable loss in catalytic activity.  相似文献   

20.
《应用陶瓷进展》2013,112(4):234-239
Abstract

In the present study, the effect of temperature and oxidising agents such as Fe2O3 and Co3O4 on physical and mechanical properties of glass foam is investigated. The glass foam is made of panel glass from dismantled cathode ray tubes and SiC as a foaming agent. In the process, powdered waste glass (mean particle size below 63 μm) in addition to 4 wt-% SiC powder (mean particle size below 45 μm) are combined with Fe2O3 and Co3O4 (0·4, 0·8 and 1·2 wt-%) have been sintered at 950 and 1050°C. The glass foamed containing 1·2 wt-% Co3O4 has good physical properties, with porosity more than 80% and bending strength more than 1·57±0·12 MPa. However, by adding different amounts of Fe2O3 in comparison with samples without iron oxide, little changes in porosity and strength are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号