首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The great current interest in hydrodesulfurization (HDS) and other hydrotreating reactions is related to the need for efficient upgrading of crude oil fractions or coal-derived liquids. The catalysts used for such reactions generally consist of molybdenum (or tungsten) supported on high surface area aluminas with cobalt or nickel added as promoters. Great efforts have been devoted to the understanding of the structural and chemical form in which the different elements are present in the active catalyst and to the establishment of correlations between such information and the various catalytic functions. This massive research effort has given valuable information on many aspects of such catalyst systems (for recent reviews of the extensive literature, see, e.g., Refs. 1-11). However, it has not been possible to reach general agreement on the types of structures present in the active catalysts and the origin of promotion  相似文献   

2.
Abstract

It has been recognized for some time that the incorporation of fluorine in oxide catalysts (for example, alumina, silica-alumina, or zeolites) enhances their activity for acid-catalyzed reactions such as cracking, isomerization, alkylation, polymerization, and disproportionation. These reactions are thought to proceed via carbocation intermediates which are formed and stabilized on surface protonic sites. The incorporation of fluorine increases the activity by enhancing the acidic properties of the catalyst. Fluorine incorporated in an oxide catalyst replaces surface O or OH, and because fluorine is very electronegative, it polarizes the lattice more than the groups it replaces, and this increases the acidity of both protonic (Brönsted) and nonprotonic (Lewis) sites on the surface. As will be seen, pure alumina is inactive or only slightly active for acid-catalyzed reactions. In contrast, it has been shown repeatedly that fluorinated alumina is a very active, selective, and stable catalyst for such reactions. The formation of fluorinated solid “superacids” which are active catalysts at low temperatures also has been reported. Very recently fluorination has been used in the modification of zeolite catalysts for better activity.  相似文献   

3.
Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al2O3 with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst.  相似文献   

4.
The development and application of ex-situ presulfurization (EPRES) technology for hydrotreating catalysts has been reviewed in the present article. The studies in laboratory scale and commercial practice indicated that the adoption of the EPRES catalyst in industrial application can significantly enhance the degree of presulfurization of metal oxide components, shorten the start-up period, and effectively reduce the environmental impact as well as the danger of start-up procedure in industrial hydrotreating unit. This catalyst has been proved to be versatile for different types of hydrogenation reactions. Different types of active site models are also discussed for better understanding the nature of presulfurized catalysts.  相似文献   

5.
The effect of residual sodium on the CuO/SiO2 catalysts prepared by precipitation-gel (PG) method has been investigated in correlation with the detailed characteristics of active component performance and catalytic performance in glycerol hydrogenolysis. Characterization of the catalysts showed that the residual sodium had a negative effect on the chemical–physical properties of the catalysts, such as the BET surface area, the dispersion of copper, and the reducibility of Cu2+ species as well as the adsorbility of reactant molecules. As a consequence, the conversion and selectivity of the catalysts in glycerol reactions generally decreased with increasing sodium content. The leaching of sodium from catalyst surface as a base could, however, on the one hand, weakly promote the activity of the catalyst, and on the other hand, could help retard the leaching of the active copper component and reduce the deactivation rate of the catalyst. The glycerol hydrogenolysis reaction is supposed to be a structure-sensitive reaction, in which copper particle sizes lower than a critical limit or those that did not fulfill a certain ensemble requirement were not active for glycerol reaction. Such details explained the lower TOFs of the catalysts with much smaller sizes. A certain amount of sodium is deduced to be needed for CuO/SiO2 catalyst to exhibit both high catalytic activity and good stability. In addition, a reaction mechanism based on the effect of sodium on the activity and selectivity in glycerol hydrogenolysis has been proposed.  相似文献   

6.
分子筛/SiC复合材料以其易于负载其他活性组分、较好的传热和传质性能等诸多优点引起了研究人员的关注。本文综述了以SiC为载体,制备分子筛/SiC复合材料的不同方法,归纳比较了一次合成法和二次晶种法的优缺点,阐述了近年来分子筛/SiC复合材料作为催化剂或催化剂载体应用于甲醇制二甲醚、甲醇制烯烃、酰基化等强放热反应中的研究现状。指出了优化分子筛/SiC复合材料的制备工艺和条件,进一步深入研究分子筛/SiC复合材料具有优异传热性能的原因是开发出具有工业应用前景的分子筛/SiC催化剂或催化剂载体的关键。  相似文献   

7.
Heterogeneous (supported) palladium catalysts like palladium on carbon and a variety of metal oxides have been shown to be highly active for Suzuki coupling reactions in neat water under mild reaction conditions (T=65 °C). It has been demonstrated for the first time that hydrophobic effects of the catalyst surface play an important role for the catalyst activity in water. Catalysts possessing hydrophobic surfaces (e.g., palladium on carbon) show higher activity for Suzuki coupling reactions in water than their hydrophilic counterparts (palladium on metal oxides). Tuning of the surface polarity of metal oxide supports (by silylation) results in higher activity under these conditions. Stronger alkaline conditions (three‐fold excess of base) compensate the effect of hydrophobic supports and result in high activity of the catalysts also with hydrophilic supports. The addition of tetrabutylammonium bromide to generate, activate and stabilize the catalytic species (dissolved palladium complexes) is necessary for the conversion of more demanding substrates. The reaction is considered to be homogeneous taking place near the catalyst surface inside a droplet or layer of the reactant.  相似文献   

8.
Green chemical processes play a crucial role in sustainable development, and efficient recyclable catalysts that can be conveniently applied in various chemical reactions are the key elements for the development of sustainable synthetic processes. Many organic transformations rely on Lewis and Br?nsted acid catalysts, and such molecules have been widely studied in organic synthesis. Over the years, researchers have looked for Lewis acid catalysts that provide high selectivity and high turnover frequency but are also stable in aqueous media and recoverable. Since the first preparation of trifluoromethanesulfonic acid by Hazeldine (triflic acid, HOTf), researchers have synthesized and used numerous metal triflates in a variety of organic reactions. Even though the rare earth metal triflates have played a major role in these studies, the majority of rare earth triflates lack one or more of the primary properties of sustainable catalysts: low cost and easy availability of the metals, easy preparation of triflates, aqueous/thermal stability, recyclability, and catalytic efficiency. In this Account, we describe the synthetic applications of Ga(OTf)(3) and its advantages over similar catalysts. Ga(OTf)(3) can be conveniently prepared from gallium metal or gallium chloride in excess of trifluoromethanesulfonic acid (triflic acid) under reflux. Among many Lewis acid catalysts recently studied, Ga(OTf)(3) is water tolerant and soluble and requires very low catalyst loading to drive various acid-catalyzed reactions including Friedel-Crafts alkylation, hydroxyalkylation, and acylation selectively and efficiently. In many reactions Ga(OTf)(3) demonstrated high chemo- and regioselectivity, high yields, excellent stability, and recyclability. We successfully synthesized many biologically active heterocycles and their fluoroanalogs under mild conditions. Many challenging reactions such as the ketonic Strecker reactions proceed efficiently via Ga(OTf)(3) catalysis. Because it is stable in water, this catalyst provides the opportunity to study substrates and develop new synthetic protocols in aqueous media, significantly reducing the production of hazardous waste from organic solvents and toxic catalyst systems.  相似文献   

9.
Oxides of the group VIb metals (Cr, Mo, W) and oxides of vanadium, rhenium, and niobium supported on a second high-surface-area metal oxide such as Al2O3, TiO2, Si02, ZrO2, and so forth are recognized as industrially important catalysts or catalyst precursors for various reactions [1-11], These materials frequently have been described as so-called monolayer catalysts based on a structural model which assumed spreading of the active oxide over the support surface. These catalysts have been investigated by a variety of techniques, conventional bulk sampling techniques as well as by surface-sensitive electron and ion spectroscopies, in an attempt to elucidate the nature of the catalyst surface species, and to study the coordination environment of the active metal center(s). Electronic spectroscopy gives rise to broad bands and the spectra are less informative than vibrational spectra. In addition, although techniques such as Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) are highly surface sensitive (with typical sampling depths of 1-2 nm), only indirect evidence concerning coordination environment can generally be obtained.  相似文献   

10.
安霞  宁文生  刘化章 《化工进展》2018,37(10):3843-3849
近年来,合成气制低碳醇Cu-Co基催化剂备受关注,催化剂的活性中心和构效关系等问题被广泛研究。本文基于这些研究,归纳和分析了Cu-Co双金属催化剂的设计思路、对催化剂双活性中心结构的认识和制备方法等的演变,重点阐述了催化剂中纳米化Cu-Co合金相的形成对催化剂反应性能的影响及其制备的难点和改善该活性相反应稳定性的方法;认为从纳米尺度上对催化剂进行设计,使催化剂表面具有丰富的Cu-Co双活性中心,并进一步改善催化剂在长期运行过程中的稳定性是今后研究的重点。  相似文献   

11.
汪志勇  邓辉  张挺  蒋新 《化工学报》2015,66(8):3050-3056
采用吸附相反应技术(APRT)制备了Cu基催化剂,并用XRD、HRTEM、H2-TPR等表征手段进行了分析。结果表明催化剂中的Cu良好分散于载体表面,粒径在5~10 nm。在液相乙醇体系合成气制甲醇的反应中,该Cu基催化剂对第一步形成中间产物甲酸乙酯的催化活性远高于工业催化剂。APRT制备的催化剂与其他催化剂(包括工业催化剂)在液相合成气制甲醇的两步反应中表现出的显著差异,不仅说明APRT催化剂具有不同的结构特点,也表明甲酸乙酯的形成和进一步的加氢的活性位是不同的。  相似文献   

12.
We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions.  相似文献   

13.

Abstract  

Heterogeneous catalysis has been around for a long time, but has still much room to grow. The empirical trial-and-error mode used to develop catalysts in early times has progressively made way for a more molecularly driven approach to their design. Modern surface-sensitive techniques have opened the way to a better understanding of the mechanisms of catalytic reactions and the demands imposed on catalytic sites. Computational studies have added insights into the structural and energetic details of surface species and the kinetic driving forces for specific surface reactions. Novel nanotechnology and synthetic advances have provided new methods to manufacture better-defined catalysts, with high concentrations of the active sites identified by fundamental mechanistic studies. All combined, these advances have led to the design of new catalysts by taking advantage of the size and shape of the nanoparticles used as active phases and of specific structures and the nature of the support. New research has also been directed to the development of more sophisticated nanostructures, to add new functionalities to simpler catalysts or to combine two or more primary functions into one single catalyst. Much progress has been made in these directions, but the new tools are yet to be fully exploited to resolve present limitations in a myriad of catalytic systems of industrial importance, for energy production and consumption, environmental remediation, and the synthesis of both commodity and fine chemicals.  相似文献   

14.
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed.  相似文献   

15.
Ethylene is an important feedstock for various industrial processes, particularly in the polymer industry. Unfortunately, during naphtha cracking to produce ethylene, there are instances of acetylene presence in the product stream, which poisons the Ziegler–Natta polymerization catalysts. Thus, appropriate process modification, optimization, and in particular, catalyst design are essential to ensure the production of highly pure ethylene that is suitable as a feedstock in polymerization reactions. Accordingly, carefully selected process parameters and the application of various catalyst systems have been optimized for this purpose. This review provides a holistic view of the recent reports on the selective hydrogenation of acetylene. Previously published reviews were limited to Pd catalysts. However, effective new metal and non-metal catalysts have been explored for selective acetylene hydrogenation. Updates on this recent progress and more comprehensive computational studies that are now available for the reaction are described herein. In addition to the favored Pd catalysts, other catalyst systems including mono, bimetallic, trimetallic, and ionic catalysts are presented. The specific role(s) that each process parameter plays to achieve high acetylene conversion and ethylene selectivity is discussed. Attempts have been made to elucidate the possible catalyst deactivation mechanisms involved in the reaction. Extensive reports suggest that acetylene adsorption occurs through an active single-site mechanism rather than via dual active sites. An increase in the reaction temperature affords high acetylene conversion and ethylene selectivity to obtain reactant streams free of ethylene. Conflicting findings to this trend have reported the presence of ethylene in the feed stream. This review will serve as a useful resource of condensed information for researchers in the field of acetylene-selective hydrogenation.  相似文献   

16.
Guido Busca 《Catalysis Today》1996,27(3-4):457-496
The use of IR spectroscopic techniques to provide information on the mechanisms of catalytic oxidation over metal oxide catalysts is briefly discussed. The data published on studies of the catalytic oxidation of methanol, of linear C4 hydrocarbons and of methylaromatics over different metal oxide surfaces are reviewed and discussed. Lattice oxygen appears to act as the active oxygen species in both selective and total oxidation. Generalized mechanisms of these complex oxidation reactions are proposed and the catalyst features affecting selectivities in these reactions are discussed. The reaction network is apparently essentially governed by the organic chemistry of the reacting molecule (thus being substantially the same over the different oxide catalysts). However, the catalyst surface governs the rate of the different steps, favoring some paths over others. Thus, selectivity is determined by the catalyst chemical behavior and by the reaction variables (contact time, temperature, gas-phase composition, presence of steam, etc.). IR studies, if performed under conditions where some intermediates are actually detectable and jointly with other techniques, can give valuable information on the catalysis mechanisms. On the other hand, it has been concluded that in situ studies frequently do not give reliable information on reaction mechanisms, because under reaction conditions spectators rather than intermediates are detected.  相似文献   

17.
Oxides of the group VIb metals (Cr, Mo, W) and oxides of vanadium, rhenium, and niobium supported on a second high-surface-area metal oxide such as Al2O3, TiO2, Si02, ZrO2, and so forth are recognized as industrially important catalysts or catalyst precursors for various reactions [1–11], These materials frequently have been described as so-called monolayer catalysts based on a structural model which assumed spreading of the active oxide over the support surface. These catalysts have been investigated by a variety of techniques, conventional bulk sampling techniques as well as by surface-sensitive electron and ion spectroscopies, in an attempt to elucidate the nature of the catalyst surface species, and to study the coordination environment of the active metal center(s). Electronic spectroscopy gives rise to broad bands and the spectra are less informative than vibrational spectra. In addition, although techniques such as Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) are highly surface sensitive (with typical sampling depths of 1–2 nm), only indirect evidence concerning coordination environment can generally be obtained.  相似文献   

18.
金一直被认为是一种相对惰性的化学元素,但是近年来的研究发现,金催化剂对于CO及VOCs的低温氧化表现出很高的催化活性。本文综述了近年来金催化剂研究的进展情况,系统介绍了金催化剂的制备方法,以及金催化剂在不同反应中的催化活性和反应的机理。  相似文献   

19.
刘鹰  刘植昌  徐春明 《化工学报》2005,56(11):2119-2123
含有AlCl-4和/或Al2Cl-7阴离子的氯铝酸离子液体对异丁烷/2-丁烯烷基化反应具有很强的催化活性,但反应的选择性较差. 改变离子液体本身的阴、阳离子种类不能提高反应的选择性.在氯铝酸离子液体中引入CuCl等金属氯化物,能够有效地抑制烷基化过程中多聚、异构、歧化、氢转移、裂解等副反应的发生,大幅提高烷基化油中三甲基戊烷等高辛烷值组分含量. 相同反应条件下,CuCl+[Et3NH]Cl-1.8AlCl3烷基化反应中高辛烷值产物的含量远高于H2SO4烷基化油中相应组分含量.  相似文献   

20.
甲烷水蒸汽重整是目前广泛应用的制氢方法,具有工艺成熟、装置运行可靠、经济性强、环保和资源合理利用等优点,在适应大规模生产方面具有不可比拟的优势,但面临着工业设备投资大及催化剂易积炭失活的问题。国内外对甲烷水蒸汽重整的重点研究方向是制备高活性、高稳定性和强抗积炭性能的催化剂以及研制低水碳比条件下应用的催化剂,有效降低能耗。甲烷水蒸汽重整催化剂分为非贵金属催化剂、负载贵金属催化剂和过渡金属碳化物及氮化物催化剂,这些催化剂均能在高空速下使反应达到热力学平衡,甲烷转化率和CO/H2选择性均很高。金属活性组分负载量、载体、助剂及负载过程对催化剂活性、稳定性和选择性有重要的影响。同时,在甲烷水蒸汽重整反应过程中,催化剂活性组分的烧结、重新组合以及催化剂表面的积炭均可以引起催化剂失活,其中,催化剂表面积炭是最主要的影响因素,积炭反应是发生C—H和C—C键断裂后的表面碳聚反应,可引起活性中心中毒,堵塞孔道,甚至使催化剂粉化。积炭反应的影响因素包括添加稀土金属氧化物、催化剂制备工艺和催化剂的载体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号