首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack.  相似文献   

2.
Flying animals resort to fast, large-degree-of-freedom motion of flapping wings, a key feature that distinguishes them from rotary or fixed-winged robotic fliers with limited motion of aerodynamic surfaces. However, flapping-wing aerodynamics are characterized by highly unsteady and three-dimensional flows difficult to model or control, and accurate aerodynamic force predictions often rely on expensive computational or experimental methods. Here, we developed a computationally efficient and data-driven state-space model to dynamically map wing kinematics to aerodynamic forces/moments. This model was trained and tested with a total of 548 different flapping-wing motions and surpassed the accuracy and generality of the existing quasi-steady models. This model used 12 states to capture the unsteady and nonlinear fluid effects pertinent to force generation without explicit information of fluid flows. We also provided a comprehensive assessment of the control authority of key wing kinematic variables and found that instantaneous aerodynamic forces/moments were largely predictable by the wing motion history within a half-stroke cycle. Furthermore, the angle of attack, normal acceleration and pitching motion had the strongest effects on the aerodynamic force/moment generation. Our results show that flapping flight inherently offers high force control authority and predictability, which can be key to developing agile and stable aerial fliers.  相似文献   

3.
Potential applications of flapping-wing micro-aerial vehicles (MAVs) have prompted enthusiasm among the engineers and researchers to understand the flow physics associated with flapping flight. An incompressible Navier–Stokes solver that is capable of handling flapping flight kind of moving boundary problem is developed. Arbitrary Lagrangian–Eulerian (ALE) method is used to handle the moving boundaries of the problem. The solver is validated with the results of problems like inline oscillation of a circular cylinder in still fluid and a flat plate rapidly accelerating at constant angle of attack. Numerical simulations of flapping flat plate mimicking the kinematics of those like insect wings are simulated, and the unsteady fluid dynamic phenomena that enhance the aerodynamic force are studied. The solution methodology provides the velocity field and pressure field details, which are used to derive the force coefficients and the vorticity field. Time history of force coefficients and vortical structures gives insight into the unsteady mechanism associated with the unsteady aerodynamic force production. The scope of the work is to develop a computational fluid dynamic (CFD) solver with the ALE method that is capable of handling moving boundary problems, and to understand the flow physics associated with the flapping-wing aerofoil kinematics and flow parameters on aerodynamic forces. Results show that delayed stall, wing–wake interaction and rotational effect are the important unsteady mechanisms that enhance the aerodynamic forces. Major contribution to the lift force is due to the presence of leading edge vortex in delayed stall mechanism.  相似文献   

4.
扑翼飞行器是一种仿照鸟类飞行的新概念小型无人飞行器,区别于传统固定翼和旋翼飞行器,它主要通过机翼扑动与空气相互作用来提供飞行动力,从而实现飞行器的姿态变动。扑翼飞行器气动特性测试的实质是揭示在非定常流场环境下,扑翼飞行器气动力的产生机制,以及相关扑翼飞行器设计参数对气动特性的影响。通过气动试验方法为扑翼飞行器飞行控制和结构优化等研制工作提供数据支持,将对新型扑翼飞行器理论研究以及飞控品质的提升起到巨大的推动作用。  相似文献   

5.
In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.  相似文献   

6.
Here, we present a detailed analysis of the wing kinematics and wing deformations of desert locusts (Schistocerca gregaria, Forskål) flying tethered in a wind tunnel. We filmed them using four high-speed digital video cameras, and used photogrammetry to reconstruct the motion of more than 100 identified points. Whereas the hindwing motions were highly stereotyped, the forewing motions showed considerable variation, consistent with a role in flight control. Both wings were positively cambered on the downstroke. The hindwing was cambered through an ‘umbrella effect’ whereby the trailing edge tension compressed the radial veins during the downstroke. Hindwing camber was reversed on the upstroke as the wing fan corrugated, reducing the projected area by 30 per cent, and releasing the tension in the trailing edge. Both the wings were strongly twisted from the root to the tip. The linear decrease in incidence along the hindwing on the downstroke precisely counteracts the linear increase in the angle of attack that would otherwise occur in root flapping for an untwisted wing. The consequent near-constant angle of attack is reminiscent of the optimum for a propeller of constant aerofoil section, wherein a linear twist distribution allows each section to operate at the unique angle of attack maximizing the lift to drag ratio. This implies tuning of the structural, morphological and kinematic parameters of the hindwing for efficient aerodynamic force production.  相似文献   

7.
扑翼飞行器是基于鸟类仿生学理论衍生出的新型无人飞行器,主要通过机翼周期性上下扑动来提供飞行器所需的升力和推力,在军用和民用飞行器领域均有广阔的应用前景。扑翼飞行器气动力测量作为样机气动性测试的重要手段,多维气动力的准确测量可为新型扑翼飞行器设计优化和飞控品质的提高提供试验数据支持。本文介绍了一种新型组合式多维小量程测力平台,可实现扑翼飞行器六维气动力和气动力矩的测量。考虑到扑翼飞行器机翼上下扑动过程动态测力需求,应用Ansys Workbench有限元分析软件对测力平台进行了模态分析和频响分析,获得在工作频率下的频率响应,仿真结果表明测力平台的振动特性满足设计要求。  相似文献   

8.
We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a "figure-of-eight" or a "banana" and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50-100g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves.  相似文献   

9.
In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering, based on a linear beam equation with the Morison equation to account for both added mass and aerodynamic damping effects. Lift strongly depends on the instantaneous angle of attack, resulting from passive pitch associated with wing deformation. We show that both instantaneous wing deformation and lift can be predicted in a much simplified framework. Moreover, our analysis suggests that resulting wing kinematics can be explained by the interplay between acceleration-related and aerodynamic damping forces. Interestingly, while both forces combine to create a high angle of attack resulting in high lift around the midstroke, they offset each other for phase control at the end of the stroke.  相似文献   

10.
Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar.  相似文献   

11.
国内外对扑翼飞行的气动特性进行了大量研究,这些研究大多基于简谐扑动的刚性翼,然而大量观察发现鸟或昆虫飞行时,翅膀存在明显的柔性变形,这种变形对其气动性能具有显著的影响。该文针对一简化的二维柔性扑翼模型,采用数值求解N-S方程并耦合扑翼柔性变形方程的计算方法,研究了扑翼柔性变形对其气动性能的影响。结果显示扑翼的柔性变形改变了扑翼周围的涡结构,从而影响扑翼的气动性能;适当的柔性变形能延迟前缘涡的脱落,从而有效地改善扑翼的推进效率,但同时减弱了扑翼在低雷诺数环境中产生高升力的尾迹捕捉机制。  相似文献   

12.
朱建阳 《工程力学》2016,33(1):246-251
国内外对扑翼飞行的气动性能进行了大量研究,这些研究大多针对特定运动轨迹下的扑翼,然而大量观察发现,昆虫在飞行时其翅膀会出现各种不同的运动形式,这些不同的翅膀运动方式必定对其气动性能产生重要影响。该文基于对昆虫的实验和数值模拟中常用的几种扑动轨迹模型分析,建立了三种具有相同准稳态气动力的扑翼扑动轨迹,并采用数值求解N-S 方程的方法,研究了前飞状态下不同扑动轨迹对扑翼气动特性产生的影响。结果显示扑动和转动均为简谐函数轨迹形式的扑翼具有较高的升举效率和推进效率。进一步通过对不同扑动轨迹扑翼流场分析得出,扑动轨迹不能改变扑翼产生的尾流性质,但可以影响涡的强度,从而使扑翼产生不同的气动性能。  相似文献   

13.
排式双翼布局低雷诺数气动特性计算研究   总被引:1,自引:0,他引:1  
张庆  叶正寅 《工程力学》2019,36(10):244-256
作为一种新型的气动布局形式,排式布局对低雷诺数流动具有较高的气动效率,适用于柔性可充气飞行器,比如充气式飞机或是高空飞艇。但是,由于前、后翼之间强烈的气动干扰现象,目前对此类布局的气动特性认识还十分有限。为了充分理解这种布局的气动特点,在前期风洞试验的基础上,开展了数值模拟工作,详细地研究了低雷诺数情况下翼型厚度、表面波纹状外形及后翼偏转角度等几何因素对此类飞行器气动特性的影响规律。计算结果表明,在计算的迎角范围内,排式布局能通过前后翼之间的气动干扰延缓或抑制机翼后缘处的流动分离,从而提高整体气动效率,因此排式布局在未来很适合应用于小型无人机或是飞艇等可充气式飞行器构型上。  相似文献   

14.
Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%.  相似文献   

15.
16.
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface.  相似文献   

17.
建立了带后缘小翼智能旋翼气动弹性载荷计算模型及减振优化分析方法。模型考虑刚体后缘小翼的气动力与惯性力对弹性桨叶系统的影响,使用粘性涡粒子法结合翼型查表法计算旋翼气动载荷,采用力积分法计算桨叶与桨毂载荷,构造了包含桨叶根部扭转及桨毂振动载荷为目标函数的优化问题,基于最速下降-黄金分割组合优化算法寻找最佳小翼偏转规律。研究发现,建立的后缘小翼载荷控制方法有效,可降低振动目标函数70%。桨叶的弹性扭转使后缘小翼能有效实施减振,但弹性扭转对小翼气动力矩的放大作用使减振时通常伴随着桨叶扭转载荷增大的现象。  相似文献   

18.
Insect wings are hybrid structures that are typically composed of veins and solid membranes. In some of the smallest flying insects, however, the wing membrane is replaced by hair-like bristles attached to a solid root. Bristles and membranous wing surfaces coexist in small but not in large insect species. There is no satisfying explanation for this finding as aerodynamic force production is always smaller in bristled than solid wings. This computational study suggests that the diversity of wing structure in small insects results from aerodynamic efficiency rather than from the requirements to produce elevated forces for flight. The tested wings vary from fully membranous to sparsely bristled and were flapped around a wing root with lift- and drag-based wing kinematic patterns and at different Reynolds numbers (Re). The results show that the decrease in aerodynamic efficiency with decreasing surface solidity is significantly smaller at Re = 4 than Re = 57. A replacement of wing membrane by bristles thus causes less change in energetic costs for flight in small compared to large insects. As a consequence, small insects may fly with bristled and solid wing surfaces at similar efficacy, while larger insects must use membranous wings for an efficient production of flight forces. The above findings are significant for the biological fitness and dispersal of insects that fly at elevated energy expenditures.  相似文献   

19.
等离子体射流控制机翼气动力矩的实验研究   总被引:1,自引:0,他引:1  
为考察火花放电等离子体射流控制机翼气动力矩的效果,在NACA0021平直机翼模型上安装火花放电等离子体射流发生器,通过改变射流发生器安装位置、射流角度及加载电参数,研究其控制机翼模型气动力矩的性能及机理。在NACA0021机翼模型近前缘处,布置2个火花放电等离子体射流发生器,采用气动力测量技术,在来流风速为20 m/s时测得,攻角-4°~10°时,滚转力矩系数最大减小了0.0024,攻角为12°~16°时,滚转力矩系数最大增加了0.0021;偏航力矩系数最大减小了0.00097。实验研究结果表明:等离子体射流可改变机翼模型横航向气动力矩,并可通过改变射流角度和加载电压频率调节等离子体射流控制横向气动力矩的效果。  相似文献   

20.
大攻角翼面颤振的一种改进的工程算法   总被引:2,自引:0,他引:2  
提出一种以当地流活塞理论和当地流小扰动线化理论分别计算大攻角翼面激波脱体流态的局部超音速区和局部亚音速区的非定常气动力,以时域积分方法求解颤振方程。改进大攻角翼面颤振分析的工程计算方法,并与风洞颤振试验结果进行了对比,计算精度满足工程设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号