首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Phenolic phytochemicals have become of interest due to their therapeutic potential, particularly with regards to their anti-cancer, anti-inflammatory, hypolipidemic, and hypoglycemic properties. An evolving area of research involving phenolics in foods and their products pertains to the functional, biological, and nutritional consequences resulting from the binding between certain phenolic compounds and the macronutrient and micronutrient constituents of foods. The goal of this review is to provide a summary of studies investigating endogenous phenolic interactions with major components in food systems, including carbohydrates, proteins, lipids, minerals and vitamins, with a focus on the phenolic compounds and nutrients in oil-bearing plants. Another major objective is to provide a comprehensive overview of the chemical nature of phenolic interactions with food constituents that could affect the quality, nutritional and functional properties of foods. Such information can assist in the discovery and optimization of specific phenolic complexes in plant-based foods that could be utilized towards various applications in the food, nutraceutical and pharmaceutical industries.  相似文献   

2.
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein–phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations  in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.  相似文献   

3.
Synthetic preservatives are widely used by the food industry to control the growth of spoilage and pathogenic microorganisms and to inhibit the process of lipid oxidation extending the shelf-life, quality and safety of food products. However, consumer's preference for natural food additives and concern regarding the safety of synthetic preservatives prompted the food industry to look for natural alternatives. Natural antimicrobials, including plant extracts and their essential oils, enzymes, peptides, bacteriocins, bacteriophages, and fermented ingredients have all been shown to have the potential for use as alternatives to chemical antimicrobials. Some spices, herbs and other plant extracts were also reported to be strong antioxidants. The antimicrobial/antioxidant activities of some plant extracts and/or their essential oils are mainly due to the presence of some major bioactive compounds, including phenolic acids, terpenes, aldehydes, and flavonoids. The proposed mechanisms of action of these natural preservatives are reported. An overview of the research done on the direct incorporation of natural preservatives agents into meat and poultry products as well as fruit and vegetables to extend their shelf-life is presented. The development of edible packaging materials containing natural preservatives is growing and their applications in selected food products are also presented in this review.  相似文献   

4.
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.  相似文献   

5.
The survival of foodborne pathogens in aqueous extracts of olive oil, virgin olive oil, vinegar, and several beverages was evaluated. Vinegar and aqueous extracts of virgin olive oil showed the strongest bactericidal activity against all strains tested. Red and white wines also killed most strains after 5 min of contact, black and green tea extracts showed weak antimicrobial activity under these conditions, and no effect was observed for the remaining beverages (fruit juices, Coca-Cola, dairy products, coffee, and beer). The phenolic compound content of the aqueous olive oil and virgin olive oil extracts could explain their antibacterial activity, which was also confirmed in mayonnaises and salads used as food models. Virgin olive oil in mayonnaises and salads reduced the counts of inoculated Salmonella Enteritidis and Listeria monocytogenes by approximately 3 log CFU/g. Therefore, olive oil could be a hurdle component in certain processed foods and exert a protective effect against foodborne pathogens when contaminated foods are ingested.  相似文献   

6.
Mycotoxins are metabolites produced by molds that contaminate food commodities, are harmful to both humans and animals, as well as cause economic losses. Many countries have set regulatory limits and strict thresholds to control the level of mycotoxins in food and feedstuffs. New technologies and strategies have been developed to inhibit toxigenic fungal invasion and to decontaminate mycotoxins. However, many of these strategies do not sufficiently detoxify mycotoxins and leave residual toxic by-products. This review focuses on the use of phenolic compounds obtained from botanical extracts as promising bioagents to inhibit fungal growth and/or to limit mycotoxin yields. The mechanism of these botanicals, legislation concerning their use, and their safety are also discussed. In addition, recent strategies to overcome stability and solubility constraints of phenolic compounds to be used in food and feed stuffs are also mentioned.  相似文献   

7.
Bacteriocin-based strategies for food biopreservation   总被引:13,自引:2,他引:11  
Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to avoid development of resistant strains. The combination of bacteriocins and physical treatments like high pressure processing or pulsed electric fields also offer good opportunities for more effective preservation of foods, providing an additional barrier to more refractile forms like bacterial endospores as well. The effectiveness of bacteriocins is often dictated by environmental factors like pH, temperature, food composition and structure, as well as the food microbiota. Foods must be considered as complex ecosystems in which microbial interactions may have a great influence on the microbial balance and proliferation of beneficial or harmful bacteria. Recent developments in molecular microbial ecology can help to better understand the global effects of bacteriocins in food ecosystems, and the study of bacterial genomes may reveal new sources of bacteriocins.  相似文献   

8.
BackgroundThe fruits of Malpighia glabra and M. emarginata (Family: Malpighiaceae) are commonly known as ‘Acerola cherry’ or ‘Barbados cherry’. Acerola fruits are well known for their high content of vitamin C, phenolic compounds, including benzoic acid derivatives, phenylpropanoids, flavonoids, anthocyanins, and carotenoids. In recent years, there is a growing interest in the role of Acerola as a nutraceutical or functional food with increasing market value. Extracts and bioactive compounds isolated from Acerola are studied for their various health promoting activities and biological activities such as antioxidant, antitumor, antihyperglycemic and skin protecting/skin whitening.Scope and approachThis article reviewed the scientific studies regarding the bioactive chemical constituents and the health beneficial effects of Acerola extracts and isolated compounds. These findings may help in future research concerning Acerola and Acerola based nutritional products.Key findings and conclusionsAcerola fruits can be considered as good candidates for the development of novel functional foods. However, detailed in vitro, in vivo and clinical studies, particularly mechanism-based studies are needed for the development of evidence-based functional food products in future.  相似文献   

9.
The production of rancid flavors and odors due to oxidative stress in foods can lead to a reduction in the sensory attributes, nutritional quality and food safety. Due to consumer demands, interest has been generated in searching plant products for natural “green” additives. Extracts from macroalgae or seaweeds are rich in polyphenolic compounds which have well documented antioxidant properties. They also have antimicrobial activities against major food spoilage and food pathogenic micro-organisms. Thus, possibility of seaweeds being added to foods as a source of antioxidant and antimicrobial is the main focus of this communication. In addition, seaweeds are also rich in dietary minerals specially sodium, potassium, iodine and fibers. Another potential area where the use of seaweed is gaining importance is regarding their addition for improving the textural properties of food products which is also extensively reviewed in this paper.

Industrial relevance

The trend towards the use of “natural green” plant extracts in various food and beverages in the food industry is gaining momentum. Seaweed, being a rich source of structurally diverse bioactive compounds with valuable nutraceutical properties, can be used as an ingredient to supplement food with functional compounds. Interest in the application of such compounds as natural antioxidants, antimicrobials or texturing agents in different food products is greater than ever. The addition of seaweeds or their extracts to food products will reduce the utilization of chemical preservatives, which will fulfill the industry as well as consumer demands for “green” products. In addition, the current status and the future projections in the functional effects of seaweeds as a means to improve the fiber content and reduce the salt content of food products, which will be of significant importance to the meat industry, is also discussed.  相似文献   

10.
Food safety continues to be a major concern for the food industry in recent years. One of the industry's top priorities has been to find alternative ways to preserve their newly developed foods while satisfying the increasing consumer demand to produce safe, all-natural products. In order to achieve this “clean label”, much research has been devoted to the use of effective plant-based antimicrobials, such as those from herbs and spices, to replace chemical preservatives. However, due to the cross-pollination character of herbs and spices, there is a lot of genetic heterogeneity among different batches of the same plant species. This poses a problem for the routine use of plants, and their extracts, as a barrier towards microbial growth. In order to combat this, a unique tissue-culture-based selection strategy was used to isolate an elite phenolic phytochemical-producing clonal line of oregano (Origanum vulgare). Ethanol extracts of this elite clonal line of oregano were then used to study its inhibitory action against Listeria monocytogenes in both broth and meat systems. Thymol and carvacrol, two of the main phenolic constituents of oregano extracts, were also tested in both systems to evaluate their activity against that of the whole oregano extract.

Results indicate that thymol, carvacrol, and the clonal oregano line were all effective in inhibiting the growth of L. monocytogenes in both systems. Approximately 150-200 ppm of pure carvacrol or thymol was needed in order to significantly inhibit the growth of L. monocytogenes in broth, while at least 1200 ppm (corresponding to 27.8 μg phenolics/ml) of the elite clonal oregano extract was needed to do the same. Inconclusive results were obtained when the clonal line was compared to store-brand samples of oregano. In meat systems, 800 ppm of the oregano extract was able to significantly inhibit the growth of the pathogen more so than 800 ppm of carvacrol. A possible explanation for this is that the oregano extract was able to work more effectively at the interface of the lipid and water-soluble portions of the meat than the carvacrol. These results are promising for the food industry since we have now developed an approach for a highly consistent and reliable natural source of antimicrobial activity for future studies.  相似文献   

11.
Interactions between the different compounds present in foods are common and have influence on the nutritional and functional properties of food products. Among a wide range of these interactions, the formation of complexes between proteins and phenolic compounds seems to be the most important issue. Complexation of the phenolic compounds with proteins can be analysed considering several aspects. These complexes might strongly affect nutritional potential of polyphenols by masking their antioxidant capacity, and on the other hand might have influence on the structure of proteins which may cause their precipitation or decrease susceptibility to digestion. The complexity of protein–phenolic compound interactions is a challenge for food analysts and forced researchers to establish a wide range of analytical methods, allowing determination of complexes formation. The main aim of this review is to give researchers an overview of the currently used methods that can be applied to study the interactions between proteins and phenolic compounds.  相似文献   

12.
Globally, sorghum is one of the most important but least utilized staple crops. Sorghum grain is a rich source of nutrients and health‐beneficial phenolic compounds. The phenolic profile of sorghum is exceptionally unique and more abundant and diverse than other common cereal grains. The phenolic compounds in sorghum are mainly composed of phenolic acids, 3‐deoxyanthocyanidins, and condensed tannins. Studies have shown that sorghum phenolic compounds have potent antioxidant activity in vitro, and consumption of sorghum whole grain may improve gut health and reduce the risks of chronic diseases. Recently, sorghum grain has been used to develop functional foods and beverages, and as an ingredient incorporated into other foods. Moreover, the phenolic compounds, 3‐deoxyanthocyanidins, and condensed tannins can be isolated and used as promising natural multifunctional additives in broad food applications. The objective of this review is to provide a comprehensive understanding of nutrition and phenolic compounds derived from sorghum and their related health effects, and demonstrate the potential for incorporation of sorghum in food systems as a functional component and food additive to improve food quality, safety, and health functions.  相似文献   

13.
Olive pomace, the solid by‐product from virgin olive oil extraction, constitutes a remarkable source of functional compounds and has been exploited by several authors to formulate high value‐added foods and, consequently, to foster the sustainability of the olive‐oil chain. In this framework, the aim of the present review was to summarize the results on the application of functional compounds from olive pomace in food products. Phenolic‐rich extracts from olive pomace were added to vegetable oils, fish burgers, fermented milk, and in the edible coating of fruit, to take advantage of their antioxidant and antimicrobial effects. Olive pomace was also used directly in the formulation of pasta and baked goods, by exploiting polyunsaturated fatty acids, phenolic compounds, and dietary fiber to obtain high value‐added healthy foods and / or to extend their shelf‐life. With the same scope, olive pomace was also added to animal feeds, providing healthy, improved animal products. Different authors used olive pomace to produce biodegradable materials and / or active packaging able to increase the content of bioactive compounds and the oxidative stability of foods. Overall, the results highlighted, in most cases, the effectiveness of the addition of olive pomace‐derived functional compounds in improving nutritional value, quality, and / or the shelf‐life of foods. However, the direct addition of olive pomace was found to be more challenging, especially due to alterations in the sensory and textural features of food. © 2020 Society of Chemical Industry  相似文献   

14.
Olive mill waste (OMW) is a promising source of valuable compounds such as polyphenols, terpenes, sterols, and other bioactive compounds, which are of interest to the pharmaceuticals and cosmeceutical industries. This review examines the potential of OMW extracts for health and beauty applications based on evidence reports from human clinical trials. The results achieved to date indicate health-enhancing properties, but little is known about the underlying mechanisms of action, dose–response relationships, and long-term impacts. Therefore, while olive by-products, extracted using eco-friendly methods, present opportunities for the development of high-value health and cosmetic products, further studies are necessary to determine the full range of their effects and establish specific therapeutic strategies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
The carotenoids are a chemically related group of pigments which occur widely and abundantly in nature. Fruits, vegetables and vegetable oils, dairy products, leaves, shrimp, lobster, the plumage of exotic birds, all contain carotenoids. Chemically, the carotenoids may be divided into carotenes, made up of carbon and hydrogen only, and oxycarotenoids containing oxygen in addition to carbon and hydrogen. The use of carotenoid‐containing plant extracts for coloring foods has been practiced for centuries and continues today. Advances in chemical synthesis resulted in the complete laboratory synthesis of beta carotene in 1950. Since then the commercial synthesis of several carotenoids has been accomplished. In the U.S. three of these commercially synthesized carotenoids, beta‐carotene, beta‐apo‐8'‐carotenal, and canthaxanthin, are accepted color additives for use in foods and are exempt from certification. These three carotenoids are also widely accepted for food use in other countries. This paper deals with the chemistry and synthesis of these three carotenoids, with special emphasis on their numerous commercially available market forms and their characteristics, and on the application of these carotenoids in the coloring of food products.  相似文献   

16.
Olive mill waste (OMW) is rich in biophenols that can be extracted and applied as natural antioxidants for the food and pharmaceutical industries. Bioactivity-guided fractionation combines the use of bioassay and chromatographic separation for isolation of potent bioactive compounds from highly complex plant extracts, such as OMW, and avoids tedious purification and identification of inactive phytochemicals. Antioxidant activity-guided fractionation and sub-fractionation of Correggiola variety OMW extract, using semi-preparative HPLC and multidimensional antioxidant screening, followed by isolation of the screening hits are described. Activity-guided fractionation using four different bioscreens revealed verbascoside and 3,4-dihydroxyphenylethyl alcohol–deacetoxyelenolic acid dialdehyde (3,4-DHPEA–DEDA) as the most potent antioxidants in Correggiola OMW extracts.  相似文献   

17.
BackgroundWith almost thirty years of application in field of probiotics, microencapsulation is becoming an important technology for sustaining cell viability during food production, storage and consumption as well as for the development of new probiotic food carriers. Potentiality of microcapsules in protecting probiotics along human digestive tract seems to be well established. Instead, the inclusion of probiotics into foods, also in microencapsulated form, poses still many challenges for the retention of their viability, being food intrinsic and extrinsic factors crucial for this item.Scope and approachWe collect the relevant literature concerning the use of microencapsulation for the inclusion of probiotics in traditional food vehicles such as milk derivatives and in novel food carriers that were grouped in bakery, meat, fruit and vegetable. Furthermore we intent to highlight within different food categories the main factors that act in challenging probiotics viability and functionality. What we aim is to establish how microencapsulation is effectively promising in the research and development of innovative probiotic foods.Key findings and conclusionsDespite the relevant improvements toward the broadening of probiotic food products and categories, additional efforts have to be attempted. For this purpose, development of easy to use, stable and cheap probiotic microcapsules could be an important key for industrial spreading of microcapsules. Also the monitoring of cell stability along the entire food production including a real storage period as well as the assessment of encapsulated probiotic metabolism are some topics that require additional investigations.  相似文献   

18.
BackgroundPhenolic compounds1 are one of the main interested nutraceuticals in the food and pharmaceutical industries. The application of phenolics is limited due to their low bioavailability, low solubility, low stability, and un-targeted release. These limitations could be overcome by novel ‘‘lipid-based nano-encapsulation technologies’’ capable of appropriated and targeted delivery functions into foods.Scope and approachIn this review, preparation, application, and characterization of lipid-based nanocarriers for phenolics have been considered and discussed including nano-emulsions, nano-scale phospholipids, and nanostructured lipid carriers. The bioavailability of nano-encapsulated phenolic products and capability of them to produce functional foods have been considered as well.Key findings and conclusionsIn the food and nutraceutical industries, the main aims of loading phenolics into nanocarriers are masking their undesirable flavor for oral administration, providing high stability and high absorption, and better release in gastrointestinal (GIT) conditions. Compared with micro-sized carriers, nanocapsules based on lipid formulations provide more surface area and have the potential to enhance solubility, improve bioavailability, and ameliorate controlled release of the nano-encapsulated phenolic compounds.  相似文献   

19.
The biological activities of phenolic compounds from olive mill wastewater (OMW) have extensively been studied, and shown a spectrum of highly interesting bioactivities. These properties demonstrate the potential of OMW extract for inclusion into food and beverages. This contribution provides an overview of key research describing the phenolic profile of OMW associated with health promoting activities including the impact of processing and storage on its composition, safety and the bioavailability. The potential application of OMW for the preparation of functional beverages and the impact of beverage formulation factors on bioavailability of OMW phenolics are discussed. Based on the available studies, phenolic compounds of OMW are highly bioavailable and safe. Owing to the numerous reported biological activities of OMW, the inclusion of OMW phenolic extract in beverage preparations may have a significant impact on the health of population through the reduction in incidence of cardiovascular and chronic degenerative diseases.  相似文献   

20.
The microbial safety of foods continues to be a major concern to consumers, regulatory agencies and food industries throughout the world. Many food preservation strategies have been used traditionally for the control of microbial spoilage in foods but the contamination of food and spoilage by microorganisms is a problem yet to be controlled adequately. Although synthetic antimicrobials are approved in many countries, the recent trend has been for use of natural preservatives, which necessitates the exploration of alternative sources of safe, effective and acceptable natural preservatives. Plants contain innumerable constituents and are valuable sources of new and biologically active molecules possessing antimicrobial properties. Plants extracts either as standardized extracts or as a source of pure compounds provide unlimited opportunities for control of microbial growth owing to their chemical diversity. Many plant extracts possess antimicrobial activity against a range of bacteria, yeast and molds, but the variations in quality and quantity of their bioactive constituents is the major detriments in their food use. Further, phytochemicals added to foods may be lost by various processing techniques. Several plant extracts or purified compounds intended for food use have been consumed by humans for thousands of years, but typical toxicological information is not available for them. Although international guidelines exist for the safety evaluation of food additives, owing to problems in standardization of plant extracts, typical toxicological values have not been assigned to them. Development of cost effective isolation procedures that yield standardized extracts as well as safety and toxicology evaluation of these antimicrobials requires a deeper investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号