首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The reoxidation process in highly Ce3+-doped BaTiO3 ceramics was studied using TEM. Samples of two different types of solid solutions, Ba1−XCe3+ X Ti1−X/4( V Ti) X/4 O3 and Ba1−XCe3+ X Ti4+1− X Ti3+ X O3, were prepared by sintering oxide mixtures in air and in a reducing atmosphere, respectively. The solid solutions were reoxidized by annealing in air at high temperatures (1000°—1100°C). As a result of internal oxidation of Ce3+ and Ti3+, fluorite CeO2 and monoclinic Ba6Ti17O40 phases were precipitated in the perovskite matrix. In Ba1−XCe3+ X Ti1−X/4( V Ti)X/4O3 solid solution precipitates nucleate heterogeneously at grain boundaries and at extended defects inside the grains, whereas in Ba1−XCe3+XTi4+1−XTi3+XO3 solid solution precipitates are nucleated mainly homogeneously inside reoxidized perovskite grains. The form of the precipitates and their orientational relationship with the matrix, as well as the mechanism of internal oxidation, are discussed.  相似文献   

2.
The solid solubility of the aliovalent dopants Fe3+ and Nb5+ in the BaBi4Ti4O15 compound, a member of the family of Aurivillius bismuth-based layer-structure perovskites, has been studied using quantitative wavelength-dispersive spectroscopic microanalysis (SEM/EPMA) in combination with X-ray powder diffractometry (XRPD). The samples with nominal (starting) compositions corresponding to the chemical formulas BaBi4Ti4–4 X Fe4 X O15 and BaBi4Ti4–4 X Nb4 X O15 were prepared by hot forging a mixture of BaTiO3 and Bi4Ti3O12 with additions of Fe2O3 or Nb2O5 followed by a long annealing at 1100°C. The study showed that an excess charge introduced into the structure by the substitution of Ti4+ ions with aliovalent dopants was preferentially compensated by a change in the ratio of Ba2+ to Bi3+ ions in the host structure according to the general formulas of the solid solutions Ba1–4 X Bi4+4 X Ti4–4 X Fe'4 X O15 and Ba1+4 X Bi4–4 X Ti4–4 X Nb·4 X O15.  相似文献   

3.
Phase relations in the system BaO-TiO2 from 67 to 100 mol% TiO2 were investigated at 1200° to 1450°C in O2. Data were obtained by microstructural, X-ray, and thermal analyses. The existence of the stable compounds Ba6Ti17O40, Ba4Ti13O30, BaTi4O9, and Ba2Ti9O20 was confirmed. The compound BaTi2O5 is unstable and either forms as a reaction intermediate below the solidus or crystallizes from the melt. The compounds Ba6Ti17O40 and Ba4Ti13O30 decompose in peritectic reactions, and BaTiO3 and Ba6Ti17O40 react to form a eutectic. Special conditions are required for the formation of Ba2Ti9O20, which decomposes in a peritectoid reaction at 1420°C. The new phase diagram is presented.  相似文献   

4.
Thermal expansion behaviors of Ba6−3 x Ln8+2 x Ti18O54 (Ln=La, Nd, and Sm, x =0.5, 0.67, and 0.75) ceramics were determined by dilatometric measurement. The samples of all investigated compositions expanded nearly linearly with increasing temperature in the range of 20°–1200°C. Their thermal expansion coefficients were determined to be 10.7–11.4 ppm/°C. A discontinuous change in sample size was observed at about 1350°C for each composition, indicating the existence of a phase transition. As determined by the high-resolution X-ray diffraction analysis, the phase constitution and the lattice parameters of Ba6−3 x Sm8+2 x Ti18O54 ceramics were maintained in the quenched samples. The origin of the phase transition was discussed thoroughly. Phase equilibrium in the BaTiO3–Ln2/3TiO3 system was reviewed by considering the phase transition.  相似文献   

5.
The ferroelectric phase transition behavior in BaTiO3 was investigated for various annealing times, temperatures, and Ba/Ti ratios by means of a differential scanning calorimeter. Coupling these observations with powder X-ray diffraction and transmission electron microscopy allowed new insights into the barium oxide (BaO)–titanium dioxide (TiO2) phase diagram. The transition temperature was varied systematically with the Ba/Ti ratio at annealing temperatures from 1200° to 1400°C in air. The transition temperature decreased with increasing concentrations of BaO and TiO2 partial Schottky defects, and showed a discontinuous change at the phase boundaries. Beyond the solubility region, two peritectoid reactions were confirmed and revised; first around 1150°C for Ba1.054Ti0.946O2.946→Ba2TiO4+BaTiO3 and second 1250°C for BaTi2O5→Ba6Ti17O40+BaTiO3, respectively. All other regimes of the BaO–TiO2 were found to be consistent with the reported diagrams in the literature.  相似文献   

6.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

7.
Fresnoite grows at 700° and 800°C, and Ba6Ti7O40 grows at 1200°C with definite orientations, which are determined by X-ray diffraction pole figure analysis. Partially textured fresnoite is formed at higher temperatures. The SiO2 films react with the BaTiO3 crystals, forming the phases Ba2TiSi2O8 (fresnoite) and Ba6Ti17O40. At 700° and 800°C, both phases grow with definite orientations, which are determined by X-ray diffraction pole figure analysis. Partially textured polycrystalline phases are formed at higher temperatures.  相似文献   

8.
Modification of the microwave dielectric properties in Ba6−3 x Nd8+2 x Ti18O54 ( x = 0.5) solid solutions by Bi/Sm cosubstitution for Nd was investigated. A large increase in the dielectric constant and near-zero temperature coefficient combined with high Qf values were obtained in modified Ba6−3 x Nd8+2 x Ti18O54 solid solutions where an enlarged solid solution limit of Bi in Ba6−3 x Nd8+2 x Ti18O54 was observed. Excellent microwave dielectric characteristics (ɛ= 105, Qf = 4110 GHz, and very low τf) were achieved in the composition Ba6−3 x (Nd0.7Bi0.18Sm0.12)8+2 x Ti18O54.  相似文献   

9.
The solid solubility of R ions (R = Ho3+, Dy3+, and Y3+) in the BaTiO3 perovskite structure was studied by quantitative electron-probe microanalysis (EPMA) using wavelength-dispersive spectroscopy (WDS), scanning electron microscopy (SEM), and X-ray diffractometry (XRD). Highly doped BaTiO3 samples were prepared using mixed-oxide technology including equilibration at 1400° and 1500°C in ambient air. The solubility was found to depend mainly on the starting composition. In the TiO2-rich samples a relatively low concentration of R incorporated preferentially at the Ba2+ lattice sites (solubility limit ∼Ba0.986R0.014Ti0.9965(V"Ti")0.0035O3at 1400°C). In BaO-rich samples a high concentration of R entered the BaTiO3 structure at the Ti4+ lattice sites (solubility limit ∼BaTi0.85R0.15O2.925(VO••)0.075at 1500°C). Ho3+, Dy3+, and Y3+incorporated preferentially at the Ti4+ lattice sites stabilize the hexagonal polymorph of BaTiO3. The phase equilibria of the Ho3+–BaTiO3 solid solutions were presented in a BaO–Ho2O3–TiO2phase diagram.  相似文献   

10.
The dielectric properties, including the DC breakdown strength, of 1 mol% Nb5+-doped BaTiO3 ceramics with different quantities of excess TiO2 have been investigated. The breakdown strength was found to decrease with increasing TiO2 content, but could not be readily explained by relative density and grain size effects. The decrease in the breakdown strength from a stoichiometric BaTiO3 composition to samples with excess TiO2 is believed to be due to the field enhancement effect (up to a factor of 1.40) at the BaTiO3 matrix because of the presence of a Ba6Ti17O40 second phase. The thermal expansion coefficient mismatch between the BaTiO3 matrix phase and the Ba6Ti17O40 phase may also result in a low breakdown strength. The dielectric properties of the pure Ba6Ti17O40 phase were also investigated and are reported herein.  相似文献   

11.
Ba2Ti9O20 crystallizes in the monoclinic system with α= l.4818(5) nm, b = 1.4283(6), and c = 0.7109(2) with β = 98.37°±0.07°. The most likely space group is P 21/ m , Z = 4 with a calculated density 4.58 g/cm3. The powder pattern was indexed. The Ba2Ti9O20 crystals form as stellated groups when melts of BaCl2+ 20 to 50% TiO2 cool from 1275°C.  相似文献   

12.
The phase boundaries of BaTi4O9 and Ba4Ti13O40 are temperature dependent and curve toward BaTiO3 above 1250°C. The appearance of a barium-rich surface phase during slow cooling is a sensitive indicator of a temperature-dependent boundary. For both compounds the surface phase which is barium-rich and has u strong X-ray peak at d=0.232 nm. No surface phase was detected on Ba6Ti17O40; therefore, its phase boundary is independent of temperature.  相似文献   

13.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

14.
The experimental conditions for {111} twin formation in BaTiO3 were investigated. When BaTiO3 compacts without excess TiO2 were sintered either in an oxidizing atmosphere (air) or in a reducing atmosphere (95N2–5H2), no {111} twins formed within the BaTiO3 grains and no abnormal grain growth occurred. In contrast, many {111} twins were present within the abnormally grown grains in the excess-TiO2-containing BaTiO3 samples sintered in air, while no twins were observed in the excess-TiO2-containing samples sintered in 95N2–5H2. X-ray diffraction analysis showed that excess TiO2 forms a Ba6Ti17O40 phase during sintering with the space group A 2/ a in air and a Ba6Ti17O40− x phase with the space group C in 95N2–5H2. It appears therefore that excess TiO2 and an oxidizing atmosphere are necessary for {111} twin formation in BaTiO3. These results may also indicate that the interface structure between BaTiO3 and Ba6Ti17O40 influences the twin formation.  相似文献   

15.
Bulk BaTiO3 ceramics with 〈111〉-texture have been prepared by the modified templated grain growth method, using platelike Ba6Ti17O40 particles as templates, and the mechanism of texture development is examined. The Ba6Ti17O40 particles induce the abnormal growth of BaTiO3 grains, and a structure similarity between {001} of Ba6Ti17O40 and {111} of BaTiO3 gives 〈111〉-texture to abnormally grown BaTiO3 grains. Thus, the 〈111〉-texture develops in the BaTiO3 matrix. The use of platelike Ba6Ti17O40 particles has been extended to a 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 matrix, but the matrix phase is decomposed by extensive chemical reactions between the matrix and template phases.  相似文献   

16.
The heterogeneous phase distribution found in Ba2Ti9O20 ceramic resonators results from a temperature-dependent phase boundary and slow reaction kinetics. When sintered at 1350°C or higher in oxygen the Ba2Ti9O20 phase becomes slightly reduced and barium-rich. Thus a stoichiometric composition forms rutile and "Ba2Ti9O20'phase. On slow cooling the excess barium diffuses to the oxygen-rich surface where it reacts to form an envelope of rutile-free material surrounding a core containing a small amount of rutile.  相似文献   

17.
An investigation of the ternary systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2 led to the discovery of two new compounds belonging to the system BaO-TiO2. These compounds, Ba2Ti9-O20 and Ba2Ti9O20, are stabilized by minute additions of SnO2 or ZrO2. The known compound BaTi2O5 can be obtained only from the molten phase and decomposes below 1300°C. into Ba2Ti5O12 and BaTiO2. In these systems no ternary compounds are found. The ternary phase diagrams can be divided into regions with high and low dielectric losses, which are in accordance with the phase relations. Tables with crystallographic data of the new compounds are included.  相似文献   

18.
The phase development sequence based on a composition equivalent to Ba2Ti9O20 during heating is found to be in the following order: BaTi5O11 > BaTi4O9 > Ba2Ti9O20. The lowest rate of formation of Ba2Ti9O20 is caused by its high surface energy and interface energy, which result in a low nucleation rate. The existence of BaTi5O11 in calcined powder helps to form Ba2Ti9O20 in sintered compacts. The effect of BaTi5O11 on Ba2Ti9O20 formation can be explained by their similar oxygen packing and by reduced volume change during transformation. The amount of BaTi5O11 formed during heating depends greatly on the compositional homogeneity of powders. The addition of SnO2 aids the formation of Ba2Ti9O20 by reduced strain energy at transformation and reduced surface energy.  相似文献   

19.
in a recent article of the Journal , Yu et al .1 reported their experimental results on the effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20. They claimed that both Al2O3 and Bi2O3 can dramatically assist the formation of Sn-doped Ba2Ti9O20 but are based on different mechanisms. They concluded that first, Bi2O3 melts above 830°C and accelerates the migration of the involved reactants to form Ba2Ti9O20; second, Al2O3 can reduce the height of the potential energy barrier of the formation of Ba2Ti9O20 due to the intergrowth of BaAl2Ti6O16 phase. They explained their results from a point of view that the formation of Ba2Ti9O20 is controlled by (1) the migration of reactants to the interfaces and (2) the height of the potential-energy barrier of the reaction at the interfaces. However, based on their results, we feel their conclusions are incautious and may be misleading, as will be discussed later.  相似文献   

20.
On the basis of the topotaxy between BaTiO3 and Ba6Ti17O40 found recently, a model of a nonconservative (111) twin in TiO2-rich BaTiO3 was constructed. The model consists of several (001) layers of Ba6Ti17O40 intergrown between (111) layers of BaTiO3, the core of the twin being a slightly modified double layer of Ba6Ti17O40 containing face-sharing octahedra. Using this model, anomalous grain growth below the eutectic temperature and preferential growth of (111) twins in a reducing atmosphere were explained, as well a nucleation of butterfly twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号