首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.
  相似文献   

2.
Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.
  相似文献   

3.
A mild and efficient synthesis for the biaryl acids via rhodium-catalyzed cross-dehydrogenative coupling reaction has been developed. This novel protocol with sodium chlorite as an oxidant featured many advantages such as mild reaction conditions, high regioselectivity, tolerance of various functional groups, and good to excellent yields.
  相似文献   

4.
Establishment of the regeneratable whole-cell catalyst platform for the production of biobased polymeric materials is a typical topic of synthetic biology. In this commentary, discovery story of a “lactate-polymerizing enzyme” (LPE) and LPE-based achievements for creating a new variety of polyesters with incorporated unnatural monomers are presented. Besides the importance of microbial platform itself is discussed referring to the “ballooning”-Escherichia coli.
  相似文献   

5.
A palladium catalyst supported on 2-aminopyridine functionalized cellulose was synthesized and fully characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectrometry. This catalyst can be applied in the Suzuki cross-coupling reaction of aryl halides with arylboronic acids in 50% ethanol to afford biaryls in good yields, and easily recycled by simple filtration after reaction without the loss of metal Pd.
  相似文献   

6.
7.
A simple nitrobenzyl-umbelliferone (NCOU1) was synthesised containing a nitroreductase (NTR) trigger moiety. The presence of NTR, resulted in the fragmentation of the parent molecule and release of the highly emissive fluorophore umbelliferone via an NTR-catalyzed reduction of the nitro group. In the presence of the NTR enzyme, NCOU1 gave rise to a 5-fold increase in fluorescence intensity at 455 nm and was selective for NTR over other reductive enzymes. These results indicate that NCOU1 can be used as a simple assay for the detection of NTR.
  相似文献   

8.
The production of bio-hydrogen from raw cassava starch via a mixed-culture dark fermentation process was investigated. The production yield of H2 was optimized by adjusting the substrate concentration and the microorganism mixture ratio. A maximum H2 yield of 1.72 mol H2/mol glucose was obtained with a cassava starch concentration of 10 g/L to give a 90% utilization rate. The kinetics of the substrate utilization and of the generation of both hydrogen and volatile fatty acids were also investigated. The substrate utilization follows pseudo first order reaction kinetics, whereas the production of both H2 and the VFAs correlate with the Gompertz equation. These results show that cassava is a good candidate for the production of biohydrogen.
  相似文献   

9.
There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
  相似文献   

10.
The slag samples taken from landfill, which originated from different metallurgical processes, have been characterized in this study. The slags were categorized as electric arc furnace (EAF) slag, argon oxygen decarburization/metal refining process slag and vacuum oxygen decarburization slag based on chromium content and basicity. EAF slags have higher potential in metal recovery than the other two slags due to its higher iron and chromium contents. The size of the iron-chromium-nickel alloy particles varies from a few μm up to several cm. The recoveries of large metal particles and metal-spinel aggregates have potential to make the metal recovery from landfilled slags economically viable.
  相似文献   

11.
This paper overviews the development of the anthraquinone auto-oxidation (AO) process for the production of hydrogen peroxide in China and abroad. The characteristics and differences between the fixed-bed and fluidized-bed reactors for the AO process are presented. The detailed comparison indicates that the production of hydrogen peroxide with the fluidized-bed reactor has many advantages, such as lower operation cost and catalyst consumption, less anthraquinone degradation, higher catalyst utilization efficiency, and higher hydrogenation efficiency. The key characters of the production technology of hydrogen peroxide based on the fluidized-bed reactor developed by the Research Institute of Petroleum Processing, Sinopec are also disclosed. It is apparent that substituting the fluidized-bed reactor for the fixed-bed reactor is a major direction of breakthrough for the production technology of hydrogen peroxide in China.
  相似文献   

12.
In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo2C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.
  相似文献   

13.
Coating commercial porous polyolefin separators with inorganic materials can improve the thermal stability of the polyolefin separators and hence improve the safety of lithium-ion batteries. Several different inorganic materials have been studied for the coating. However, there lacks a study on how different inorganic materials affect the properties of separators, in terms of thermal stability and cell performance. Herein, we present such a study on coating a commercial polypropylene separator with four inorganic materials, i.e., Al2O3, SiO2, ZrO2 and zeolite. All inorganic coatings have improved thermal stability of the separators although with differences. The coating layers add 28%–45% of electrical resistance compared with the pure polypropylene separator, but all the cells prepared with the coated polypropylene separators have the same electrical chemical performance as the uncoated separator in terms of rate capability and capacities at different temperatures.
  相似文献   

14.
Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2?g–1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).
  相似文献   

15.
Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.
  相似文献   

16.
Rhamnolipids are a class of biosurfactants that have a great potential to be used in industries. Five proteins/enzymes, namely RhlA, RhlB, RhlC, RhlG and RhlI, are critical for the production of rhamnolipids in Pseudomonas aeruginosa. Four of the 5 proteins except RhlC were successfully over-expressed in E. coli and three of them (RhlA, RhlB and RhlI) were purified and obtained in milligram quantities. The purified proteins were shown to be folded in solution. Homology models were built for RhlA, RhlB and RhlI. These results lay a basis for further structural and functional characterization of these proteins in vitro to favor the construction of super strains for rhamnolipids production.
  相似文献   

17.
Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.
  相似文献   

18.
With the recent emphasis and development of sustainable chemistry, the conversion of biomass feedstocks into alternative fuels and fine chemicals over various heterogeneous catalysts has received much attention. In particular, owing to their uniform micropores, strong acidity, and stable and rigid frameworks, zeolites as catalysts or co-catalysts have exhibited excellent catalytic performances in many reactions, including hydrodesulfurization, Fischer-Tropsch synthesis, and hydrodeoxygenation. However, the relatively small sizes of the zeolite micropores strongly limit the conversion of bulky biomolecules. To overcome this issue, mesoporous zeolites with pores larger than those of biomolecules have been synthesized. As expected, these mesoporous zeolites have outperformed conventional zeolites with improved activities, better selectivities, and longer catalyst lives for the upgrading of pyrolysis oils, the transformation of lipids into biofuels, and the conversion of glycerol into acrolein and aromatic compounds. This review briefly summarizes recent works on the rational synthesis of mesoporous zeolites and their superior catalytic properties in biomass conversion.
  相似文献   

19.
Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.
  相似文献   

20.
Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号