首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the conception and analysis of a unidirectional hybrid three-phase rectifier suitable for medium- and high-power applications. The rectifier is composed of a single-switch diode bridge boost-type rectifier in parallel with a pulsewidth modulation (PWM) three-phase unidirectional boost rectifier. The objective is to obtain a structure capable of providing sinusoidal input currents with low harmonic distortion and dc output voltage regulation. The diode rectifier operates at low frequency and has a higher output power rating. Therefore, the PWM unidirectional rectifier is designed to operate with a small power rating and at a high switching frequency. The total harmonic distortion of the proposed structure varies between 0% and 32%, depending only on the amount of power processed by the PWM three-phase unidirectional rectifier. The rectifier topology conception, principle of operation, control scheme, and simulation and experimental results of a 20-kW laboratory prototype are also presented in this paper.  相似文献   

2.
A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THD/sub I/). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.  相似文献   

3.
A new control scheme for a single-phase bridge rectifier with three-level pulsewidth modulation is proposed to achieve high power factor and low current distortion. The main circuit consists of a diode-bridge rectifier, a boost inductor, two AC power switches, and two capacitors. According to the proposed control scheme based on a voltage comparator and hysteresis current control technique, the output capacitor voltages are balanced and the line current will follow the supply current command. The supply current command is derived from a DC-link voltage regulator and an output power estimator. The major advantage of using a three-level rectifier is that the blocking voltage of each AC power device is clamping to half of the DC-link voltage and the generated harmonics of the three-level rectifier are less than those of the conventional two-level rectifier. There are five voltage levels (0, ±VDC/2, ±VDC) on the AC side of the diode rectifier. The high power factor and low harmonic currents at the input of the rectifier are verified by software simulations and experimental tests  相似文献   

4.
A Simple and novel variable hysteresis band current control technique for three-phase three-level unity power factor (PF) rectifier is proposed in this paper. The hysteresis band is controlled as variations of the rectifier input voltage and output dc link voltage to achieve constant switching frequency at any operating conditions, i.e., at rated and below and above the rated conditions. The rectifier has the characteristic of easy implementation, and draws a nearly sinusoidal current at unity input PF. Theoretical and predicted results of its analysis are verified initially through digital simulation, and confirmed by using an experimental prototype  相似文献   

5.
This paper proposes a new three-phase single-stage power-factor corrector buck-boost-type rectifier topology. The typical topology uses a bridge configuration with six switches. This new topology only requires four switches, improving the rectifier efficiency as only one reverse-blocking power semiconductor conducts at any time. A vector-based sliding-mode control method for the three-phase input currents is also proposed. This fast and robust technique uses sliding mode to generate /spl alpha//spl beta/ space-vector modulation, which forces the input line currents to track a suitable sinusoidal reference. A near-unity power-factor operation of the rectifier is obtained using a sinusoidal reference in phase with the input source voltages. A proportional-integral controller is adopted to regulate the output voltage of the converter. This external voltage controller modulates the amplitude of the current references. The characteristics of the new rectifier are verified with experimental results.  相似文献   

6.
A single-stage high-power-factor electronic ballast with a Class-E rectifier as a power-factor corrector is proposed. A Class-E rectifier is inserted between the front-end bridge rectifier and the bulk filter capacitor to increase the conduction angle of the bridge-rectifier diode current for obtaining low line-current harmonics. The Class-E rectifier is driven by a high-frequency sinusoidal current source, which is obtained from the square-wave output voltage of the Class-D inverter through an LC series resonant circuit. A high-frequency transformer is used for impedance matching. The experimental results for a 32-W prototype ballast are given. The switching frequency was 61.3 kHz. At full power, the power factor was 0.992 and the total ballast efficiency was 88.3%. The lamp-current crest factor was about 1.36. The simulated and experimental results were in very good agreement.  相似文献   

7.
This paper describes a technique for shaping the input current to a three-phase diode rectifier using a two-switch series-connected dual boost converter and a three-phase bidirectional switch circuit. Circuits are described for generating a single voltage DC output, “single DC-rail”, or a dual output DC voltage using center-tapped capacitors, “split DC-rail”. Both rectifier types can be operated with the boost inductors located either on the DC or the AC side of the rectifier. The resultant rectifier circuit configurations have an excellent immunity to the “shoot-through” fault condition and use active switching elements with low per-unit current ratings and low switching losses. These features increase the reliability factor and lower the cost penalty associated with unity fundamental power factor three-phase rectifiers. Test results are presented for the rectifiers using simulation and experimental results  相似文献   

8.
A passive 12-pulse rectifier system, a two-level, and a three-level active three-phase pulsewidth-modulation (PWM) rectifier system are analyzed for supplying the dc-voltage link of a 5-kW variable-speed hydraulic pump drive of an electro-hydrostatic actuator to be employed in future More Electric Aircraft. Weight, volume, and efficiency of the concepts are compared for an input phase voltage range of 98-132 V and an input frequency range of 400-800 Hz. The 12-pulse system shows advantages concerning volume, efficiency, and complexity but is characterized by a high system weight. Accordingly, the three-level PWM rectifier is identified as the most advantageous solution. Finally, a novel extension of the 12-pulse rectifier system by turn-off power semiconductors is proposed which allows a control of the output voltage and, therefore, eliminates the dependency on the mains and load condition which constitutes a main drawback of the passive concept.  相似文献   

9.
This paper presents a single-phase soft-switched high power factor (PF) Sheppard-Taylor rectifier suitable for applications requiring low-voltage and high-current output. The proposed rectifier is designed to operate at discontinuous capacitor voltage mode. The Sheppard-Taylor converter in this mode of operation provides zero-voltage turnoff switching, as well as natural input PF correction over a wide range of input voltage, which makes the converter suitable for universal input applications. Due to its simplified control circuitry and reduced switch current stress, this converter presents better efficiency and higher reliability. In addition, the presented converter features continuous input-output currents, which result in low electromagnetic interference emission. Principle of operation, theoretical analysis, and experimental results from a laboratory prototype rated at 45 W/10 Vdc output voltage are presented. The measured efficiency and total harmonic distortion of the input line current were 85% and 3.2%, respectively. The input current harmonics meet the EN61000-3-2 Class D requirements.  相似文献   

10.
This paper describes a soft switching active snubber for an IGBT operating in a single switch unity power factor three-phase diode rectifier. The soft switching snubber circuit provides zero-voltage turn-off for the main switch. The high turn-off losses of the IGBT due to current tailing are reduced by zero-voltage switching. This allows the circuit to be operated at very high switching frequencies with regulated DC output voltage, high quality input current and unity input power factor. Simulation and experimental results are included  相似文献   

11.
The television receiver often employs a capacitor-input-type rectifier. In this case, it is regulated as a class D piece of equipment. This paper presents a novel ringing-choke-converter-type switching regulator, which functions as an active filter. The proposed circuit features a simple circuit configuration and cost effectiveness. It achieves a high power factor of about 0.95 and reduces current harmonics (third, fifth, and seventh) in the AC input current to less than 40% of the limit value for class D. The voltage across the input smoothing capacitor does not show large variations and the components in the conventional ringing-choke converter can be used unmodified. Ripple content of the DC output voltage shows a slight increase and is the subject for future research.  相似文献   

12.
Based on the combination of a three-phase diode bridge and a DC/DC boost converter, a new three-phase three-switch three-level pulsewidth modulated (PWM) rectifier system is developed. It can be characterized by sinusoidal mains current consumption, controlled output voltage, and low-blocking voltage stress on the power transistors. The application could be, e.g., for feeding the DC link of a telecommunications power supply module. The stationary operational behavior, the control of the mains currents, and the control of the output voltage are analyzed. Finally, the stresses on the system components are determined by digital simulation and compared to the stresses in a conventional six-switch two-level PWM rectifier system  相似文献   

13.
A conventional DC-AC inverter can only output either a single-phase AC voltage or a set of three-phase AC voltages. A new three-port DC-AC inverter which can simultaneously output a single-phase AC voltage and a set of three-phase AC voltages is proposed in this paper. This three-port DC-AC inverter is based on the three-port T-type multi-level power converter which is composed of three T-type power electronic legs, a decoupling transformer set, a filter inductor set, a single-phase filter capacitor, and a three-phase filter capacitor set. The DC port of the proposed power converter is connected to a DC power source to act as the input port, and the single-phase AC port and the three-phase AC port serve as two output ports to supply power to the single-phase load and the three-phase load, respectively. The zero-sequence transformer is used to decouple the single-phase and three-phase AC components, which are generated by the three T-type power electronic legs. The operation principle of this three-port DC-AC inverter is analyzed, and a hardware prototype is established to verify the performance of the proposed three-port DC-AC inverter. The experimental results are as expected.  相似文献   

14.
Regulation of load voltage in single-phase applications is becoming an important issue for critical loads. This paper presents a novel high-performance single-phase voltage regulator which has a common arm between the rectifier and inverter, and adopts an appropriate switching strategy. The proposed voltage regulator employs six switches and can be implemented by only one three-phase inverter module. The proposed voltage regulator has the capability of delivering sinusoidal input current with unity power factor, good output voltage regulation, and bidirectional power flow. For these purposes, a fully digital controller is designed and implemented using a TMS320F240 digital signal processor. In addition, a novel low-cost AC capacitor is also presented. This type of capacitor requires two DC capacitors and two diodes, enabling low-cost and compact manufacturing. Consequently, the complete voltage regulator system, which is mainly suitable for an uninterruptible power supply as well as reactive or nonlinear loads, can be constructed compactly and inexpensively. Experimental results are presented to verify the feasibility of the proposed voltage regulator system  相似文献   

15.
文章对基于单周期控制的三相PWM高功率因数整流器进行了研究,推导了单周期控制三相电压型PWM整流器的控制规律。它不需要乘法器更不需要对输入电压进行检测,其控制逻辑简单并且以恒定频率工作,可以在每个开关周期控制输入电流跟踪正弦参考量,从而实现低电流谐波畸变和高功率因数。基于Multisim2001软件平台,建立了基于单周期控制的三相电压型PWM整流器的仿真模型,完成了6kW三相PWM整流器的设计和实验研究,仿真和试验结果都验证了理论分析的正确性。  相似文献   

16.
A high-performance three- to single-phase online uninterruptible power supply (UPS) is proposed. The proposed UPS is composed of a rectifier, a battery charger/discharger, and an inverter. The rectifier has the capability of power-factor correction and regulates a dc-link voltage. When the rectifier becomes unavailable or when the current required by the load exceeds the output rating of the rectifier, the charger/discharger supplies the power demanded by the load to a dc-link capacitor. The inverter provides a regulated sinusoidal output voltage and limits an output current under an impulsive load. New control algorithms of the rectifier, the charger/discharger, and the inverter are proposed. The proposed algorithms of the rectifier and the charger/discharger improve dynamic performance at step load change. To improve the transient response of the output voltage at outage of an input source, a mode change method of the charger/discharger is also proposed. Additionally, the proposed current-limit algorithm of the inverter can be implemented without additional hardware, and it increases the reliability of the UPS.   相似文献   

17.
This paper presents the notion of combined control of a system of interconnected power electronic converters. The concept is demonstrated using a three-phase series-parallel active power filter as an example. The described active power filter consists of a series-parallel combination of two full bridge VSIs capable of arbitrarily controlling the input current and output voltage. The proposed control scheme treats the converter combination as a single unit and uses the inverse system model to generate deadbeat control response for both input current and output voltage. A full-order predictive state observer is used to reduce the number of sensors. Simulation results show better disturbance rejection characteristics of the proposed control when compared to the separately controlled converter scheme  相似文献   

18.
A three-phase pulse-width-modulated (PWM) half-controlled rectifier using a novel PWM control strategy whereby the low-order harmonic content in both the input current and the output voltage is reduced is presented. The circuit operates with a unity displacement factor at its input and uses minimum power components. The PWM strategy developed can be implemented on a three-phase half-controlled rectifier bridge with only three controlled switches to obtain PWM controlled rectification. Although the circuit operation is explained with force-commutated SCR switches, the basic controlled PWM operation is valid for any type of switch control. The circuit has wide applications ranging from rectifiers to battery chargers to motor drives. Even if an input current filter is desired, its size will be small due to the PWM pattern used  相似文献   

19.
A novel technique is presented for generation of a contemporary estimate of the fundamental component of the distorted input current or voltage to an uncontrolled three-phase bridge rectifier with a DC link smoothing filter. This allows for accurate calculation of cancellation references for series and shunt active power filters (APF) operating under steady-state and transient conditions. Improved transient performance allows for reduction of the power rating and control system bandwidth of an APF. An artificial neural network (ANN) predictor has been used to directly calculate the mean dq-axis input to the rectifier without filtering. This is a critical stage in separating harmonic distortion from fundamental current or voltage. The technique is developed using simulation data for both series and shunt APFs and validated with experimental results. The predictive harmonic identifier shows good steady-state performance and excellent transient performance that far exceeds that of a conventional identifier using time-domain or frequency-domain filtering  相似文献   

20.
This paper presents a transmitter and receiver for magnetic resonant wireless battery charging system. In the receiver, a wide-input range CMOS multi-mode active rectifier is proposed for a magnetic resonant wireless battery charging system. The configuration is automatically changed with respect to the magnitude of the input AC voltage. The output voltage of the multi-mode rectifier is sensed by a comparator. Furthermore, the configuration of the multi-mode rectifier is automatically selected by switches as original rectifier mode, 1-stage voltage multiplier or 2-stage voltage multiplier mode. As a result, a rectified DC voltage is output from 7.5 to 19 V for an input AC voltage of 5–20 V. In the transmitter, a class-E power amplifier (PA) with an automatic power control loop and load compensation circuit is proposed to improve the power efficiency. The transmitted power is controlled by adjusting the signal applied to the gate of the power control transistor. In addition, a parallel capacitor is also controlled to enhance the efficiency and compensate for the load variation. This chip is implemented using 0.35 μm BCD technology with an active area of around 5,000 × 2,500 μm. When the magnitude of the input AC voltage is 10 V, the power conversion efficiency of the multi-mode active rectifier is about 94 %.The maximum power efficiency of the receiver is about 70 %. The transmitter provides an output power control range of 10–30.2 dBm. The maximum power efficiency of the PA is 71.5 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号