首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
刘军  甘乾煜  张泽秋  吴琼 《电网技术》2023,(5):2098-2108
储能应用于风电功率波动平抑时,存在有效平抑波动功率与减小储能电池负担难以协调的问题,导致风电功率波动平抑效果不佳或储能电池负担增大。针对以上问题,提出了一种改进的自适应滑动平均滤波算法,在满足1min和10min双时间尺度的风电并网功率波动率标准下,对风电功率进行自适应分解,不仅获得了满足风电并网标准的并网功率参考值,还减小了需要储能电池平抑的波动功率,然后采用双磷酸铁锂电池来平抑波动功率,同时考虑荷电状态(state of charge,SOC)反馈,通过检测储能电池SOC的值,判断其是否达到充电上限或放电下限,以此防止过充过放电对储能电池运行寿命的影响,运用雨流计数法寿命评估模型对储能电池运行寿命进行评估。算例表明,所提算法能够根据风电功率波动率的大小在线实时调节滑动窗口的大小,实现风电功率的分解,从而有效地平抑了风电功率波动,并且降低了储能电池的负担,延长了其使用寿命。  相似文献   

2.
基于荷电状态分级优化的混合储能风电功率平抑方法   总被引:2,自引:0,他引:2  
为了弥补单一储能技术的不足,由超级电容和储能电池组成的混合储能系统越来越多地应用于风电功率平抑。为保证混合储能系统整体充放能力,并充分利用超级电容反应快和储能电池容量大的特点,文中提出了一种基于电池荷电状态(SOC)分级优化的混合储能系统风电功率平抑方法。该方法采用了分层结构,包含优化控制层和协调控制层。优化控制层根据风电平抑性能要求以及混合储能系统当前整体SOC,计算动态调节储能系统的设定功率;协调控制层根据储能设备各自的SOC和充放电特性,按优化控制层计算出的设定功率进行功率分配,以实现对设定功率的快速跟踪。仿真实验证明,该方法在保持风电平抑效果不变的情况下,维持了混合储能系统整体较高的充放能力,同时优化了储能设备的SOC,避免了储能设备的过充过放。  相似文献   

3.
为减少风电波动率,提高并网可靠性,提出一种基于模糊经验模态分解(empirical mode decomposition,EMD)的储能系统平滑风电功率波动的控制策略。采用经验模态分解对风电功率进行滤波,低频分量并网,高频分量并入电池储能系统(battery energy storage system,BESS)。使用平滑后风电波动率和储能电池荷电状态(state of charge,SOC)作为约束条件,利用模糊控制算法,自适应在线调整EMD滤波阶数,通过模糊自适应控制器,能够更好地平滑风电波动。对比其他平抑风电功率储能控制策略,仿真实例表明,该方法可以有效地平抑风电功率波动,避免储能电池过充过放,稳定储能荷电状态。  相似文献   

4.
风储联合发电系统电池荷电状态和功率偏差控制策略   总被引:2,自引:0,他引:2  
提出了一种新型的基于风电功率预测偏差和电池荷电状态(SOC)反馈的储能系统控制策略,通过预测结果计算风电功率的变化偏差,得出完全补偿波动所需的储能系统充放电功率,引入补偿系数联合求解获得储能系统的充放电控制指令。同时,建立了补偿系数的动态优化模型,包括长时间尺度下基于输出功率波动和电池容量变化指标的基准补偿系数寻优模型,短时间尺度下基于电池SOC指标和充放电状态的补偿系数快速修正模型。算法采用的最优求解和SOC指标具有广泛的适应性,便于推广不同容量储能系统在风电功率平滑中的应用,可以兼顾储能电池的寿命和输出功率的平滑性。算例结合风电场的功率实测数据,进行储能系统配置仿真,验证了该控制策略能够最大程度发挥储能系统能力,在维持电池能量稳定前提下,平抑风电场输出功率的波动。  相似文献   

5.
平抑长短期风电功率波动的风储协调运行方法   总被引:2,自引:0,他引:2  
提出了一种基于模型预测控制(MPC)和低通滤波(LPF)原理的实时平抑长短期风电功率波动的风储协调运行方法。首先,该方法利用风电场发电功率预测曲线,综合考虑优化时域内实际并网功率的平滑效果、储能荷电状态(SOC)、储能出力以及相关约束,通过每15min的滚动计算来实现对储能系统的优化控制。然后,建立了MPC与LPF两种原理的联系,推导了对常规LPF原理进行补偿的计算公式,使得储能SOC变化能够跟踪MPC设定的优化轨迹。算例分析表明,新方法既能够有效平抑1min和10min的短期风电功率波动,又能在15min~4h的时间尺度上,有效控制储能SOC的变化范围。  相似文献   

6.
为解决可再生能源的间歇性和波动性,保证微电网各发电单元之间功率平衡,加入复合储能(HESS)是行之有效的方法。提出将功率型超导储能(SMES)和能量型钒流电池(VRB)储能组成复合储能平抑含风力发电的微电网功率波动。针对现有两级滤波法的缺点,加入荷电状态(SOC)反馈,提出基于优化控制层和协调控制层的分层控制。仿真比较了两级滤波法和分层控制法平抑风电功率波动的效果及各储能SOC的动态变化,结果验证了SMES和VRB复合储能分层控制策略的有效性。  相似文献   

7.
基于荷电状态动态调整的储能电站容量规划   总被引:2,自引:0,他引:2  
储能系统平滑风电功率波动可以有效提高风电输出功率的稳定性,但昂贵的储能成本却制约着储能系统的整体性能,由此储能容量优化成为解决储能成本与平抑波动能力相互制约的方式之一。以储能系统荷电状态(SOC)为参量,提出基于可变功率修正系数的储能系统充放电控制策略,在储能系统有效平抑风电功率波动的同时,避免出现过充过放现象,保证储能系统的运行寿命。以储能系统多种成本之和最小为目标,构建计及风电场投资、运行成本和储能运行寿命的储能容量优化模型,并采用粒子群优化算法对模型进行求解。仿真分析结果验证了所提方法的有效性。  相似文献   

8.
利用电池储能系统平滑风电功率波动可以提高风力发电功率输出的稳定性。针对风电出力的间歇性和波动性,基于移动平均算法,在同时考虑储能系统的荷电状态(state of charge,SOC)和风电功率波动率的情况下提出了一种平滑风电功率控制策略,并与传统一阶低通滤波平滑风电功率方法进行对比。通过Matlab/Simulink仿真验证了该方法的有效性,在平滑风电并网功率的同时可以有效减少储能使用次数与储能能量。  相似文献   

9.
电池储能系统是平抑风电功率预测误差的理想选择,在现有储能电池价格水平前提下,电池储能系统的功率与容量优化配置尤为重要。基于风电场功率预测误差分布特性,依据风电功率预测预报标准中的约束条件和考核指标,分析了电池储能系统功率与风电功率预测误差、风电功率预测误差缩减率、全天预测结果的均方根误差、准确率及合格率的特性关系,储能系统容量与容量需求满足率及容量需求满足增长率的特性关系。为较好平抑风电功率预测误差且使投入成本较低,基于截止正态分布法,提出了一种储能系统功率与容量配置优化方法。该方法可计算用于跟踪风电场计划出力所需的较优储能系统功率与容量。通过实例计算分析,验证了该方法的有效性和可行性。  相似文献   

10.
计及储能出力水平的平滑风电功率模型预测控制策略   总被引:1,自引:0,他引:1  
风电大规模并网的有功功率波动给电力系统造成了较大的影响,在风电场并网处加入储能系统可有效平抑风电并网功率波动,提高风电在电网中的渗透率。在储能电池平滑风电功率波动的典型应用场景下,提出了一种计及储能电池出力能力的模型预测控制方法,在减小储能电池出力的同时,兼顾电网对储能系统充放电能力的需求。首先,利用风储发电系统的数学模型,分析储能电池当前输出功率对未来出力能力的影响;然后,设计以储能电池最小出力和最大出力能力为运行原则的模型预测控制策略;最后,基于实际风场数据进行了仿真。结果表明,所提方法可有效降低风电并网功率波动,提高储能电池出力能力,减小储能电池进入死区时间。  相似文献   

11.
风电大规模并网的有功功率波动给电力系统造成了较大的影响,在风电场并网处加入储能系统可有效平抑风电并网功率波动,提高风电在电网中的渗透率。在储能电池平滑风电功率波动的典型应用场景下,提出了一种计及储能电池出力能力的模型预测控制方法,在减小储能电池出力的同时,兼顾电网对储能系统充放电能力的需求。首先,利用风储发电系统的数学模型,分析储能电池当前输出功率对未来出力能力的影响;然后,设计以储能电池最小出力和最大出力能力为运行原则的模型预测控制策略;最后,基于实际风场数据进行了仿真。结果表明,所提方法可有效降低风电并网功率波动,提高储能电池出力能力,减小储能电池进入死区时间。  相似文献   

12.
为缩小0~24h 时间尺度内的风电功率波动幅度,抑制风电输出较大峰谷差,提高风电可靠性,改善电网调峰能力,基于风电功率短期预测技术,提出了平抑风电功率波动的全钒电池储能系统(Vanadium redox flow battery energy storage system,VRB-ESS)运行控制策略,并给出控制算法流程.应用上述储能控制方法,以典型风电场为例,将风电输出功率波动限设置为10%进行风储联合仿真分析,结果证明该控制策略在风电部分削峰填谷方面有效、可行.  相似文献   

13.
在风电场增设储能系统通过功率的动态补偿可以有效地平抑风电场的功率波动,改善风电电能质量,提高电网的风电接纳能力。综合考虑电池的荷电状态(SOC)和风电场输出功率波动抑制效果,提出了一种模糊自适应的控制策略,通过调节滤波时间常数防止电池的过载,通过在有功功率给定值上加上模糊调整量优化电池的SOC状态。仿真结果表明,该控制策略能够兼顾风电场功率波动抑制效果和储能电池的SOC状态,对储能电池的荷电状态进行优化,达到延长电池寿命的目的。  相似文献   

14.
风电爬坡对电力系统运行的经济性和可靠性有较大的影响,也是对电网造成冲击的重要因素之一,如何减小风电爬坡时的功率波动对电网的冲击成为国内外研究热点。为风电场配备储能系统能够有效抑制风电爬坡时的功率波动。为此,提出一种基于风电功率超短期预测和混合储能系统实现平抑功率在电池和超级电容器之间有效分配方法。首先通过奇异值分解理论风电爬坡事件,提出混合储能系统的动态最佳荷电状态,以使储能设备更好地平抑下一时段风电功率波动。考虑未来风电功率及其预测误差,根据超前充放电控制策略对储能设备当前充放电进行修正,并给出了提前充放电修正公式。仿真结果表明,该方法及其控制策略能有效抑制风电爬坡的功率波动,从而减小风电爬坡事件对电网的冲击,并且能够充分提高混合储能设备的利用效率。  相似文献   

15.
利用电池储能系统平滑风电功率波动可以提高风力发电功率输出的稳定性。针对风电出力的间歇性和波动性,基于移动平均算法,在同时考虑储能系统的荷电状态(state of charge,SOC)和风电功率波动率的情况下提出了一种平滑风电功率控制策略,并与传统一阶低通滤波平滑风电功率方法进行对比。通过Matlab/Simulink仿真验证了该方法的有效性,在平滑风电并网功率的同时可以有效减少储能使用次数与储能能量。  相似文献   

16.
采用蓄电池-超级电容混合储能系统来平抑风电功率波动,实现风电平滑并网。首先,针对风功率非线性、不稳定的波动特性,结合1min/10min两个时间尺度的风电场输出功率变化最大限值,采用基于集合经验模态分解(EEMD)方法,实现风功率的自适应分解,得到风电并网功率和混合储能系统充、放电功率指令;其次,根据蓄电池和超级电容的出力需求,结合储能设备荷电状态(SOC)等约束条件,提出混合储能系统能量管理协调控制算法,实现储能系统内部功率相互流动;最后,基于风电历史数据,验证所提方法的有效性和合理性。  相似文献   

17.
配置合理的储能系统对孤立微电网的稳定与经济运行具有重要的意义。在含风电、蓄电池与超级电容器混合储能的孤立微电网基础上,充分考虑实际系统中蓄电池极化效应的影响,以平抑低频风电功率波动为目的配置蓄电池容量,同时以平抑高频风电功率波动为目的配置超级电容器容量,并建立了平抑一定概率下功率波动的储能容量配置模型,从而保证储能系统有足够容量维持孤立微电网稳定运行。结合具体微电网实例对混合储能配置方法进行说明,分析给定数据下的风电功率波动,计算得到满足设定概率的功率波动的储能配置容量,并通过实时仿真进行验证,结果表明储能系统可平抑风电功率波动、维持负荷稳定运行,且蓄电池与超级电容器SOC均运行于合理范围。该方法对实际微电网中储能的容量配置具有一定的指导意义。  相似文献   

18.
针对蓄电池和超级电容器储能特性不同的特点,将风电功率信号进行多尺度小波包分解,得到蓄电池和超级电容器的充放电参考功率。提出基于蓄电池和超级电容器荷电状态SOC(state of charge)的功率分配优化方法,详细讨论两种储能元件协调工作时可能出现的所有工作状态,实时检测储能元件SOC的大小,当处于非正常工作状态时调整储能元件的实时充放电参考功率,进行相应的过充过放保护。该方法对风电功率波动具有较好的平抑效果,且能有效延长蓄电池和超级电容器的使用寿命,在Matlab/Simulink中搭建仿真模型验证了该控制方法的有效性。  相似文献   

19.
储能电池平抑风功率波动策略   总被引:2,自引:0,他引:2       下载免费PDF全文
为了平抑风功率波动,并优化风电场出力特性,基于双电池组拓扑结构的电池储能系统(Battery Energy Storage System, BESS)提出了在短期内平抑风功率波动的新型控制策略。该策略基于即时控制策略,把未来风功率波动对当前储能电池充放电行为的影响纳入考虑范围。双BESS则根据策略需求进行充电或放电,任一电池组电量达到满充或满放,则两组电池的工作状态同时切换。在新型控制策略中通过风电预测并结合滚动优化法实现双BESS动态控制。实践表明该策略在风电出力特性上不仅取得了较好的平抑效果,而且能降低因储能容量不足引起的瞬时大功率波动。在电池特性上,由于采用双BESS,很大程度上降低了电池充放电次数,延长了电池寿命。  相似文献   

20.
为了平抑风电波动并且保证储能荷电状态(SOC)跟踪给定目标值,针对风储协调优化控制,给出了一种风储多时间尺度的柔性控制策略。首先,采用正态分布的方法分析了风储的容量配比。其次,采用带死区的滑动平均值滤波算法对风电场分钟级运行数据进行平滑,利用模型预测控制(MPC)原理,结合风电场超短期风功率预测数据,实现了储能小时级充放电功率的滚动优化。最后,在Matlab中搭建了钒液流电池模型和柔性控制策略模型,采用风电场的实际运行数据对模型进行了仿真验证。仿真结果表明,风储柔性控制策略是正确和有效的,在降低风电波动的同时又能保证储能SOC不偏离目标值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号