首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Spiral interpolation algorithm for multislice spiral CT--part I: theory   总被引:4,自引:0,他引:4  
This paper presents the adaptive axial interpolator (AAI), a novel spiral interpolation approach for multislice spiral computed tomography (CT) implemented in a clinical multislice CT scanner, the SOMATOM Volume Zoom (Siemens Medical Systems, Forchheim, Germany). The method works on parallel-beam data generated from the acquired fan-beam data by azimuthal rebinning. Spiral interpolation is performed by distance-dependent weighting; i.e., for each ray, its distance to the image plane is evaluated and serves as an argument to a freely selectable weighting function, resulting in a weight factor. A normalization step is applied to the weight factors to ensure that the sum of all corresponding weights (i.e., the weights applied to rays that contribute to the same ray in the interpolated sinogram) is 1. By selection of appropriate weighting functions and suitable adjustment of the tube current, it is possible to keep the slice sensitivity profiles (SSP) as well as the pixel noise constant for all pitch values in the relevant range. Also, a large range of slice-thickness can be reconstructed from a given collimation. The method is, thus, very versatile. Further advantages are that it uses the entire applied dose for imaging and allows for efficient implementation using a table lookup approach.  相似文献   

2.
While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.  相似文献   

3.
ECG-correlated imaging of the heart with subsecond multislice spiral CT   总被引:4,自引:0,他引:4  
The new spiral multislice computed tomography (CT) scanners and the significant increase in rotation speed offer great potential for cardiac imaging with X-ray CT. We have therefore developed the dedicated cardiac reconstruction algorithms 180 degrees multislice cardio interpolation (MCI) and 180 degrees multislice cardio delta (MCD) and here offer further details and validation. The algorithm 180 degreesMCI is an electrocardiogram (ECG)-correlated filtering (or weighting) algorithm in both the cardiac phase and in the z-position. Effective scan times (absolute temporal resolution) of as low as t(eff) = 56 ms are possible, assuming M 4 simultaneously measured slices at a rotation time of t(rot) = 0.5 s and S < or = d < or = 3S for the table feed d per rotation, where S denotes the collimated slice thickness. The relative temporal resolution w (fraction of the heart cycle depicted in the image), which is the more important parameter in cardiac imaging, will then be as low as w = 12.5% of the heart cycle. The second approach, 180 degreesMCD, is an ECG-correlated partial scan reconstruction of 180 degrees + delta data with delta < phi (fan-angle). Its absolute temporal resolution lies in the order of 250 ms (for the central ray, i.e., for the center of rotation), and the relative temporal resolution w increases with increasing heart rate, e.g., from typically w = 25% at fH = 60 min(-1) to w = 50% at fH = 120 min(-1), assuming again t(rot) = 0.5 s. For validation purposes, we have done simulations of a virtual cardiac motion phantom, measurements of a dedicated cardiac calibration and motion phantom, and we have reconstructed patient data with simultaneously acquired ECG. Both algorithms significantly improve the image quality compared with the standard reconstruction algorithms 180 degrees multislice linear interpolation (MLI) and 180 degrees multislice filtered interpolation (MFI). However, 180 degreesMCI is clearly superior to 180 degreesMCD for all heart rates. This is best illustrated by multiplanar reformations (MPR) or other three-dimensional (3-D) displays of the volume. 180 degreesMCI, due to its higher temporal resolution, is best for spatial and temporal four-dimensional (4-D) tracking of the anatomy. A tunable scanner rotation time to avoid resonance behavior of the heart rate and the scanner's rotation and shorter rotation times would be of further benefit.  相似文献   

4.
We have calculated the aperture function of a positron computed tomograph (PCT) with computer simulation, and evaluated the axial resolution of a multislice PCT, Positologica III, both theoretically and experimentally. The axial point spread function (PSF) was approximately a triangle at or near the center of the field, and the sensitivity for the slice decreased significantly as the source moved away off the image plane. Accordingly, there were low sensitivity areas between an in-plane and the adjacent cross-plane. This invisible region was clinically significant if the object was thin enough in the z-axis. In order to fill up the gaps between adjacent slices, it is valuable to move the patient half the slice interval in the z-axis and perform an " interpolating scan."  相似文献   

5.
Model and human observers have been compared in a series of localization receiver operating characteristic (LROC) studies involving single-slice and multislice image displays. The task was detection of Ga-avid lymphomas within single photon emission computed tomography (SPECT)-reconstructed transverse slices of a mathematical phantom, and the studies involved four reconstruction strategies: the filtered-backprojection (FBP) and ordered-subset expectation-maximization (OSEM) algorithms with two- and three-dimensional postreconstruction filtering. The human-observer data was drawn from studies performed by Wells et al. (2000), while multiclass versions of the nonprewhitening (NPW), channelized nonprewhitening (CNPW), and channelized Hotelling (CH) model observers, each capable of performing the tumor search task, were applied. The channelized observers were evaluated with multiple square-channel models and both with and without internal noise. For the multislice studies, two different capacities for integrating the slice information were also tested. The CH observer gave good quantitative agreement with the human data from both image-display studies when the internal-noise model was used. The CNPW observer performed similarly with the iterative strategies. Wells et al. had shown that human observers are imperfect integrators of multislice information, and this is characterized as increased internal noise with the model observers.  相似文献   

6.
This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB, In general, the smaller the slice distance, the better the 3-D compression performance.  相似文献   

7.
This paper discusses image reconstruction with a tilted gantry in multislice computed tomography (CT) with helical (spiral) data acquisition. The reconstruction problem with gantry tilt is shown to be transformable into the problem of reconstructing a virtual object from multislice CT data with no gantry tilt, for which various algorithms exist in the literature. The virtual object is related to the real object by a simple affine transformation that transforms the tilted helical trajectory of the X-ray source into a nontilted helix, and the real object can be computed from the virtual object using one-dimensional interpolation. However, the interpolation may be skipped since the reconstruction of the virtual object on a Cartesian grid provides directly nondistorted images of the real object on slices parallel to the tilted plane of the gantry. The theory is first presented without any specification of the detector geometry, then applied to the curved detector geometry of third-generation CT scanners with the use of Katsevich's formula for example. Results from computer-simulated data of the FORBILD thorax phantom are given in support of the theory.  相似文献   

8.
Tomographic reconstruction for tilted helical multislice CT   总被引:2,自引:0,他引:2  
One of the most recent technical advancements in computed tomography (CT) is the introduction of multislice CT (MCT). Because multiple detector rows are used for data acquisition, MCT offers higher volume coverage, faster scan speed, and reduced X-ray tube loading. Recognizing its unique data-sampling pattern, several image reconstruction algorithms were developed. These algorithms have been shown to be adequate in producing clinically acceptable images. Recent studies, however, have revealed that the image quality of MCT can be significantly degraded when helical data are acquired with a tilted gantry. The degraded image quality has rendered this feature unacceptable for clinical usage. In this paper, we first present a detailed investigation on the cause of the image quality degradation. An analytical model is derived to provide a mathematical basis for correction. Several compensation schemes are subsequently presented, and a detailed performance comparison is provided in terms of spatial resolution, noise, computation efficiency, and image artifacts.  相似文献   

9.
At the advent of multislice computed tomography ICT) a variety of approximate cone-beam algorithms have been proposed suited for reconstruction of small cone-angle CT data in a spiral mode of operation. The goal of this study is to identify a practical and efficient approximate cone-beam method, extend its potential for medical use, and demonstrate its performance at medium cone-angles required for area detector CT. We will investigate two different approximate single-slice rebinning algorithms for cone-beam CT: the multirow Fourier reconstruction (MFR) and an extension of the advanced single-slice rebinning method (ASSR), which combines the idea of ASSR with a z-filtering approach. Thus, both algorithms, MFR and ASSR, are formulated in the framework of z-filtering using optimized spiral interpolation algorithms. In each view, X-ray samples to be used for reconstruction are identified, which describe an approximation to a virtual reconstruction plane. The performance of approximate reconstruction should improve as the virtual reconstruction plane better fits the spiral focus path. The image quality of the respective reconstruction will be assessed with respect to image artifacts, spatial resolution, contrast resolution, and image noise. It turns out that the ASSR method using tilted reconstruction planes is a practical and efficient algorithm, providing image quality comparable to that of a single-row scanning system even with a 46-row detector at a table feed of 64 mm. Both algorithms tolerate any table feed below the maximum value associated to the detector height. Due to the z-filter approach, all detector data sampled can be used for image reconstruction.  相似文献   

10.
In this study, we examine longitudinal aliasing properties in multislice helical computed tomography (CT) volumes reconstructed under the multiple parallel fanbeam approximation by use of a 180LI-type algorithm. We focus on the differences between the multislice case and the single-slice case, which has been studied previously. Specifically, we examine longitudinal aliasing properties in four-slice scanners for helical pitches 3 and 6, which are sometimes called "preferred" in four-slice helical CT, because it is believed that the effective longitudinal sampling intervals at these pitches are equivalent to those in single-slice helical CT operating at pitches 1 and 2, respectively. While these equivalences have been supported by comparative studies of slice-sensitivity profiles in single- and multislice helical CT, artifacts have been observed in pitch-3 and pitch-6 multislice images that were not evident in their purported single-slice counterparts. We attribute these differences to aliasing arising in the multislice reconstructions that is not present in the single-slice counterparts. We find that the aliasing has two principal origins: sampling effects similar to those in the single-slice case and cone-beam effects. The difference between the multislice, pitch-3 and single-slice, pitch-1 results is attributed to the small cone angle in multislice helical CT, which introduces inconsistencies among the measurements of different detector rows. The difference between multislice, pitch-6 and single-slice, pitch-2 results is attributed to a combination of the cone angle and genuine differences in sampling patterns. It is argued, however, that the lack of strict equivalence with single-slice counterparts does not necessarily undermine the claim that pitches 3 and 6 are "preferred" relative to other pitches in multislice helical CT.  相似文献   

11.
目前广泛应用的锥束螺旋CT主要采用螺旋FDK算法进行图像重建,但为了使算法能更应用于实际,许多学者对标准的螺旋轨迹进行了拓展.本文主要研究了变螺距螺旋扫描轨迹.变螺距螺旋扫描可以提高扫描速度,有更高的时间、空间分辨率.本文详细介绍了变螺距螺旋扫描轨迹,给出了具体的变螺距螺旋扫描轨迹方程.针对图像重建,本文主要从FDK重...  相似文献   

12.
大直径MCT晶体的双晶衍射回摆曲线测量   总被引:1,自引:1,他引:0  
采用加压改进Bridgman法生长出大直径(φ=40 mm)MCT晶体.对所生长的晶体进行了双晶衍射回摆曲线测量,所测量样品的双晶衍射回摆曲线的半峰宽最小值为14.4″~16.2″.测试结果表明:大直径MCT晶体质量优良,具有较好的结构完整性.  相似文献   

13.
张朝霞 《光电子.激光》2010,(12):1894-1898
为克服传统区域生长方法中容易发生的欠分割和过分割现象,引入局部图像分析技术,设定一系列感兴趣区域(ROI),对冠状动脉的多层螺旋CT(MSCT)图像进行分割。首先应用基于Hessian矩阵的局部血管增强(LVE)滤波,提升图像的对比度;随后采用自适应性区域生长(ARG)算法,并对阈值适时调整。分割后的局部图像经过全局融合得到整体冠脉树。算法综合了图像的局部形状信息和灰度信息,确保了分割结果的准确性和完整性。实验结果表明,算法对左前降支(LAD)、左回旋支(LCX)、对角支(Diag)及右冠状动脉(RCA)均有较好的分割效果。  相似文献   

14.
Lacaita  A. Ghioni  M. Cova  S. 《Electronics letters》1989,25(13):841-843
A new single-proton avalanche diode (SPAD) with double-epitaxial silicon structure is presented. The device has a time response with short diffusion tail (270 ps time-constant), high resolution (45 ps FWHM, full-width at half maximum of the peak) and low noise, i.e. low-dark-count rate.<>  相似文献   

15.
A GaN film with a thickness of 250 μm was grown on a GaN/sapphire template in a vertical hydride vapor phase epitaxy (HVPE) reactor. The full-width at half-maximum (FWHM) values of the film were 141 and 498 arcsec for the (0 0 2) and (1 0 2) reflections, respectively. A sharp band-edge emission with a FWHM of 20 meV at 50 K was observed, which corresponded to good crystalline quality of the film. Some almost circular-shaped hillocks located in the spiral growth center were found on the film surface with dimensions of 100 μm, whose origin was related to screw dislocations and micropipes. Meanwhile, large hexagonal pits also appeared on the film surface, which had six triangular {1 0  1} facets. The strong emission in the pits was dominated by an impurity-related emission at 377 nm, which could have been a high-concentration oxygen impurity.  相似文献   

16.
The authors report, for the first time, a highly selective and widely tunable optical filter at 1.55 μm using a Fabry-Perot resonator with micromachined InP/air-gap distributed Bragg reflectors. The minimum resonance full-width at half-maximum (FWHM), as measured by microreflectivity experiments, is close to 0.4 mm (around 1.55 μm) and is compatible with wavelength-division multiplexing specifications of optical telecommunications. The tuning range is 62 nm for a tuning voltage of 14 V. The FWHM is kept below 1 nm over a 40 nm tuning range  相似文献   

17.
Rat brain images acquired with a small animal positron emission tomography (PET) camera and reconstructed with the three-dimensional (3-D) ordered-subsets expectation-maximization (OSEM) algorithm with resolution recovery have better quality when the brain is imaged by itself than when inside the head with surrounding background activity. The purpose of this study was to characterize the dependence of this effect on the level of background activity, attenuation, and scatter. Monte Carlo simulations of the imaging system were performed. The coefficient of variation from replicate images, full-width at half-maximum (FWHM) from point sources and image profile fitting, and image contrast and uniformity were used to evaluate algorithm performance. A rat head with the typical levels of five and ten times the brain activity in the surrounding background requires additional iterations to achieve the same resolution as the brain-only case at a cost of 24% and 64% additional noise, respectively. For the same phantoms, object scatter reduced contrast by 3%-5%. However, attenuation degraded resolution by 0.2 mm and was responsible for up to 12% nonuniformity in the brain images suggesting that attenuation correction is useful. Given the effects of emission and attenuation distribution on both resolution and noise, simulations or phantom studies should be used for each imaging situation to select the appropriate number of OSEM iterations to achieve the desired resolution-noise levels.  相似文献   

18.
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.  相似文献   

19.
Radio-frequency current density imaging (RF-CDI) is an imaging technique that noninvasively measures current density distribution at the Larmor frequency utilizing magnetic resonance imaging (MRI). Previously implemented RF-CDI techniques were only able to image a single slice transverse to the static magnetic field ${rm B}_{0}$ . This paper describes the first realization of a multislice RF-CDI sequence on a 1.5 T clinical imager. Multislice RF current density images have been reconstructed for two phantoms. The influence of MRI random noise on the sensitivity of the multislice RF-CDI measurement has also been studied by theoretical analysis, simulation and phantom experiments.   相似文献   

20.
We demonstrate a novel all-fiber gap-type tunable bandpass filter configuration that consists of a broadband hollow optical fiber (HOF) acoustooptic tunable filter (AOTF) concatenated with a narrowband single-mode fiber (SMF)-AOTF. Owing to the unique mode coupling properties of HOF-AOTF and SMF-AOTF, a narrow passband channel of a full-width at half-maximum (FWHM) of ~4 nm could be formed in a broad stopband platform of a 90-nm FWHM successfully. In this scheme, the center wavelength and rejection efficiency of both passband and stopband were found to be flexibly tunable by adjusting the frequency and the voltage of radio-frequency signals applied to individual acoustic transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号