首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

2.
In this paper, an adaptive fuzzy backstepping dynamic surface control approach is considered for a class of uncertain pure‐feedback nonlinear systems with immeasurable states. Fuzzy logic systems are first employed to approximate the unknown nonlinear functions, and then an adaptive fuzzy state observer is designed to estimate the immeasurable states. By the combination of the adaptive backstepping design with a dynamic surface control technique, an adaptive fuzzy output feedback backstepping control approach is developed. It is proven that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded, and the observer and tracking errors converge to a small neighborhood of the origin by choosing the design parameters appropriately. Simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an adaptive multi‐dimensional Taylor network (MTN) control scheme based on the backstepping and dynamic surface control (DSC) is developed to solve the tracking control problem for the stochastic nonlinear system with immeasurable states. The MTNs are used to approximate the unknown nonlinearities, and then based on the multivariable analog of circle criterion, an observer is first introduced to estimate the immeasurable states. By combining the adaptive backstepping technique and the DSC technique, an adaptive MTN output‐feedback backstepping DSC approach is developed. It is shown that the proposed controller ensures that all signals of the closed‐loop system are remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of probability. Finally, the effectiveness of the design approach is illustrated by simulation results.  相似文献   

4.
In this article, the problem of asynchronous adaptive dynamic output feedback sliding mode control (SMC) for a class of Takagi-Sugeno (T-S) fuzzy Markovian jump systems (MJSs) with actuator faults is investigated. The asynchronous dynamic output feedback control strategy is employed, as the nonsynchronization phenomenon of jump modes exists between the plant and the controller. A novel asynchronous adaptive SMC approach is proposed to solve the synthesis problem for T-S fuzzy MJSs with actuator faults. Sufficient conditions for stochastic asymptotic stability of T-S fuzzy MJSs are given. Under the designed asynchronous adaptive SMC scheme, the effects of actuator faults and external disturbance can be completely compensated and the reachability of sliding surface is ensured. Finally, an example is provided to demonstrate the effectiveness of the proposed design techniques.  相似文献   

5.
This paper investigates the robust adaptive fault‐tolerant control problem for state‐constrained continuous‐time linear systems with parameter uncertainties, external disturbances, and actuator faults including stuck, outage, and loss of effectiveness. It is assumed that the knowledge of the system matrices, as well as the upper bounds of the disturbances and faults, is unknown. By incorporating a barrier‐function like term into the Lyapunov function design, a novel model‐free fault‐tolerant control scheme is proposed in a parameter‐dependent form, and the state constraint requirements are guaranteed. The time‐varying parameters are adjusted online based on an adaptive method to prevent the states from violating the constraints and compensate automatically the uncertainties, disturbances, and actuator faults. The time‐invariant parameters solved by using data‐based policy iteration algorithm are introduced for helping to stabilize the system. Furthermore, it is shown that the states converge asymptotically to zero without transgression of the constraints and all signals in the resulting closed‐loop system are uniformly bounded. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies an observer‐based adaptive fuzzy control problem for stochastic nonlinear systems in nonstrict‐feedback form. The unknown backlash‐like hysteresis is considered in the systems. In the design process, the unknown nonlinearities and unavailable state variables are tackled by introducing the fuzzy logic systems and constructing a fuzzy observer, respectively. By using adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy control algorithm is developed. For the closed‐loop system, the proposed controller can guarantee all the signals are 4‐moment semiglobally uniformly ultimately bounded. Finally, simulation results further show the effectiveness of the presented control scheme.  相似文献   

7.
This article addresses an adaptive fuzzy practical fixed-time tracking control for nonlinear systems with unknown actuator constraints and uncertainty functions. First, fuzzy logic systems (FLSs) are used to identify uncertain functions. Then, by utilizing FLSs, backstepping technique, and finite-time stability theory, an adaptive fuzzy practical fixed-time control is proposed to obtain satisfactory tracking performance even when the actuator faults. The theoretical analysis verified that the closed-loop systems is practical fixed-time stable under the proposed control strategy, the tracking error converges to a small neighborhood of the origin in a fixed time, and the convergence time is independent of the state conditions. Finally, both numerical simulation and physical example demonstrates the effectiveness of the proposed control strategy.  相似文献   

8.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

9.
In this paper, the problem of fault‐tolerant insensitive control is addressed for a class of linear time‐invariant continuous‐time systems against bounded time‐varying actuator faults and controller gain variations. Adaptive mechanisms are developed to adjust controller gains in order to compensate for the detrimental effects of partial loss of control effectiveness and bias‐actuator faults. Variations of controller gains arise from time‐varying and bounded perturbations that are supposed to always exist in adaptive mechanisms. Based on the disturbed outputs of adaptive mechanisms, three different adaptive control strategies are constructed to achieve bounded stability results of the closed‐loop adaptive fault‐tolerant control systems in the presence of actuator faults and controller gain variations. Furthermore, comparisons of convergence boundaries of states and limits of control inputs among adaptive strategies are developed in this paper. The efficiency of the proposed adaptive control strategies and their comparisons are demonstrated by a rocket fairing structural‐acoustic model.  相似文献   

10.
This article investigates the novel finite time adaptive neural fault-tolerant controller (FTC) for strict-feedback switched stochastic systems under arbitrary switching signals and takes into actuator failures including loss of effectiveness faults and bias faults consideration concurrently. Neural networks are utilized to approximate the unknown external disturbance and internal dynamics. On the basis of Itô differential equation and backstepping technique, an adaptive neural finite time FTC method is put forward. It is attested that the closed-loop systems are semiglobal practical finite time stable in probability and the tracking effects are great. Finally, to further demonstrate the high efficiency of proposed control method, two simulation examples are given.  相似文献   

11.
This article studies the fixed-time time-invariant formation control problem for a class of uncertain nonlinear heterogeneous multi-agent systems (HMASs) with actuator faults and partial unknown control directions. Throughout the formation process, the possibility of actuator faults in systems and unknown control directions between individual agents are taken into account. Lipschitz conditions are introduced to identify the continuous uncertain nonlinear functions. To estimate the agents' local immeasurable states in HMASs, a distributed fixed-time observer is proposed, which can ensure that the states of follower agents are observed in fixed time. In addition, a distributed formation fault-tolerant control scheme will handle actuator faults. By designing a Nussbaum function, the problem of partial unknown control directions for HMASs can be solved in fixed time. Based on the fixed time stability theory, it is proved that the closed-loop stability and the tracking performance can be guaranteed in fixed time, that is, the achieved time is independent of any initial states. In the end, a simulation example is given to testify the effectiveness of the proposed control method.  相似文献   

12.
This article focuses on the decentralized adaptive fuzzy fixed-time fault-tolerant control issue for the error-constrained interconnected nonlinear systems with unknown actuator faults possessing dead zone. The unknown nonlinear functions can be modeled via fuzzy logic systems. By utilizing the parameter estimation method, the effect of unknown actuator faults possessing dead zone can be compensated. To guarantee the predefined dynamic performance of state tracking errors, the barrier Lyapunov functions and prescribed performance functions are introduced. Then, a dual-performance fault-tolerant control method that can guarantee fast transient performance and predefined performance of state tracking errors is proposed via using the decentralized backstepping technique. In addition, on the basis of the Lyapunov stability theory and the fixed-time criterion, it is proved that the predefined performance of full-state errors and the stability of closed-loop systems can be guaranteed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

13.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

14.
In this article, a fault-tolerant control (FTC) scheme for linear multiagent systems (MASs) subject to time-varying loss of effectiveness and time-varying additive actuator faults as well as external disturbance is investigated. The main objective of the proposed FTC approach is to keep the performance of an MAS after the occurrence of actuator faults similar to the healthy one. The envisaged adaptive virtual actuator for each agent does not require a separate fault detection, isolation, and identification unit nor does it require any information regarding the mission of the MAS. It is shown that the difference between the states of each agent before and after the occurrence of actuator faults can be made arbitrary small and the ultimate bounds of the state error are also obtained. Furthermore, it is shown that for constant actuator faults the state error of each agent converges to zero. Simulation results corresponding to a team of F-8 aircraft and a heterogeneous MAS with the different order demonstrate and illustrate the effectiveness of our proposed FTC scheme.  相似文献   

15.
In this paper, an adaptive neural output feedback control scheme is investigated for a class of stochastic nonlinear systems with unmeasured states and four kinds of uncertainties including uncertain nonlinear function, dynamic disturbance, input unmodeled dynamics, and stochastic inverse dynamics. The unmeasured states are estimated by K‐filters, and stochastic inverse dynamics is dealt with by constructing a changing supply function. The considered input unmodeled dynamic subsystem possesses nonlinear feature, and a dynamic normalization signal is introduced to counteract the unstable effect produced by the input unmodeled dynamics. Combining dynamic surface control technique with stochastic input‐to‐state stability, small‐gain condition, and Chebyshev's inequality, the designed robust adaptive controller can guarantee that all the signals in the closed‐loop system are bounded in probability, and the error signals are semi‐globally uniformly ultimately bounded in mean square or the sense of four‐moment. Simulation results are provided to verify the effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with the robust fault tolerant controller design of networked control systems (NCSs) with state delay and stochastic actuator failures. By utilizing the input delay approach, an equivalent continuous‐time generalized time delay system in both state and input is obtained. By applying a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient conditions that ensure the asymptotic mean‐square stability of NCSs with stochastic actuator failures are derived in terms of linear matrix inequalities (LMIs). It is realized by employing a new Lyapunov–Krasovskii function in the decomposed integral intervals and directly handle the inversely weighted convex combination of quadratic terms of integral quantities with reciprocally convex combination technique. Moreover, the proposed approach involves neither slack variable nor any model transformation. A numerical example is provided to demonstrate the effectiveness and less conservatism of the proposed method.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an adaptive sliding mode (ASM) scheme is proposed for fault identification and fault‐tolerant control of near space vehicles (NSVs). First, the attitude dynamic model is introduced, and a baseline controller based on reference sliding mode scheme is designed in the case of no faults. Then fault parameterizations with actuator dynamics is presented for several classes of faults: lock‐in‐place, float, hard‐over, and loss of effectiveness. On the basis of adaptive observer design, fault parameters can be accurately estimated on‐line. Furthermore, an ASM fault‐tolerant controller is designed for both cases of actuator dynamic faults and control effector damage. Finally, simulation experiments show that the proposed ASM scheme is able to quickly and accurately identify faults and reconfigure the controller, resulting in excellent overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

20.
This paper presents a nonlinear gain feedback technique for observer‐based decentralized neural adaptive dynamic surface control of a class of large‐scale nonlinear systems with immeasurable states and uncertain interconnections among subsystems. Neural networks are used in the observer design to estimate the immeasurable states and thus facilitate the control design. Besides avoiding the complexity problem in traditional backstepping, the new nonlinear feedback gain method endows an automatic regulation ability into the pioneering dynamic surface control design and improvement in dynamic performance. Novel Lyapunov function is designed and rigorous stability analysis is given to show that all the closed‐loop signals are kept semiglobally uniformly ultimately bounded, and the output tracking errors can be guaranteed to converge to sufficient area around zero, with the bound values characterized by design parameters in an explicit manner. Simulation and comparative results are shown to verify effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号