首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In this paper, the reliable H filtering problem is studied for a class of discrete nonlinear Markovian jump systems with sensor failures and time delays. The transition probabilities of the jumping process are assumed to be partly unknown. The failures of sensors are quantified by a variable taking values in a given interval. The time‐varying delay is unknown with given lower and upper bounds. The purpose of the addressed reliable H filtering problem is to design a mode‐dependent filter such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a prescribed H performance level. By using a new Lyapunov–Krasovskii functional and delay‐partitioning technique, sufficient delay‐dependent conditions for the existence of such a filter are obtained. The filter gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi‐definite programme method. A numerical example is provided to demonstrate the effectiveness of the proposed design approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper studies distributed H2/H filtering problem with the aid of neighbors’ information. It is assumed that there are both bounded power uncertainty and stochastic white noise in the model of the considered system. A 2‐step design approach is proposed to calculate the observer gain and the coupling gain in the proposed observers. In order to reduce the computation load of solving coupled matrix equations, a simplified design procedure is also proposed. Simulation of 2 examples shows the effectiveness of the proposed filter design procedure.  相似文献   

3.
This paper is devoted to the problem of robust H filtering for a class of uncertain switched neutral systems subject to stochastic disturbance and time‐varying delay. Attention is focused on the design of a full‐order switched filter such that the filtering error system is robust mean‐square exponentially stable with a prescribed weighted H performance. On the basis of the average dwell time approach and the piecewise Lyapunov function technique, sufficient conditions for the solvability of this problem are obtained in terms of linear matrix inequalities. Then, by solving the corresponding linear matrix inequalities, the desired full‐order switched filter is derived for all admissible uncertainties, time‐varying delay, and stochastic disturbances. A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the problem of robust delay‐dependent L2L filtering for a class of Takagi–Sugeno fuzzy systems with time‐varying delays. The purpose is to design a fuzzy filter such that both the robust stability and a prescribed L2L performance level of the filtering error system are guaranteed. A delay‐dependent sufficient condition for the solvability of the problem is obtained and a linear matrix inequality (LMI) approach is developed. A desired filter can be constructed by solving a set of LMIs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a robust exponential l2 ? l filtering problem is addressed for discrete‐time switched systems with polytopic uncertainties. The purpose of robust exponential l2 ? l filtering is to design a filter such that the resulting filtering error system is robustly exponentially stable with a decay rate and a prescribed exponential l2 ? l performance index. The robust exponential l2 ? l filtering problem is solved via an average dwell time approach. Sufficient conditions in terms of strict LMI are derived for checking the robust exponential stability of a filter. An explicit expression for the desired robust exponential filter is also given. Finally, a numerical example is provided to demonstrate the potential and effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the problem of H filtering for discrete‐time Markov jump linear system with parametric uncertainties and quantized measurements, when the jumping mode information is not accessible. By converting the quantized errors into a sector‐bounded nonlinearity, the parametric uncertainties and measurements quantization are dealt with in a unified framework. The mode‐independent H filter is designed, and sufficient conditions are established via Lyapunov function approach, such that for all possible uncertain parameters and quantization errors, the resulting filtering error system is robustly stochastically stable and achieves a guaranteed H filtering error performance index. A numerical example is provided to demonstrate the feasibility and effectiveness of the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the fault detection problem is investigated for a class of discrete‐time switched singular systems with time‐varying state delays. The residual generator is firstly constructed based on a switched filter, and the design of fault detection filter is formulated as an H filtering problem, that is, minimizing the error between residual and fault in the H sense. Then, by constructing an appropriate decay‐rate‐dependent piecewise Lyapunov function and using the average dwell time scheme, a sufficient condition for the residual system to be regular, causal, and exponential stable while satisfying a prescribed H performance is derived in terms of linear matrix inequalities (LMIs). The corresponding solvability condition for the desired fault detection filters is also established via LMI approach. Finally, a numerical example is presented to show the effectiveness of the developed theoretical results.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper deals with the problem of robust H filter design for Markovian jump systems with norm‐bounded time‐varying parameter uncertainties and mode‐dependent distributed delays. Both the state and the measurement equations are assumed to be with distributed delays. Sufficient conditions for the existence of robust H filters are obtained. Via solving a set of linear matrix inequalities, a desired filter can be constructed. The developed theory is illustrated by a simulation example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, several concepts of switching frequency are introduced to analyze the properties and performance of switched systems in infinite as well as finite‐time intervals. The observation is very motivating that different system properties and performances depend on different switching frequencies. Sufficient conditions ensuring asymptotic stability, ?2 gain performance, and state boundness are derived on the basis of the notions of switching frequency, respectively. Then, on the basis of the analysis results, the control synthesis problems are addressed. LMI‐based design algorithms are proposed to meet different control synthesis requirements. Numerical design examples are provided to demonstrate our results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
11.
This paper is concerned with the problem of the fault detection (FD) filter design for discrete‐time switched linear systems with mode‐dependent average dwell‐time. The switching law is mode‐dependent and each subsystem has its own average dwell‐time. The FD filters are designed such that the augmented switched systems are asymptotically stable, and the residual signal generated by the filters achieves a weighted l2‐gain for some disturbances and guarantees an H ? performance for the fault. By the aid of multiple Lyapunov functions combined with projection lemma, sufficient conditions for the design of the FD filters are formulated by linear matrix inequalities, furthermore, the filters gains are characterized in terms of the solution of a convex optimization problem. Finally, an application to boost convertor is given to illustrate the effectiveness and the applicability of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
13.
In this paper, a method is proposed to reduce harmonic fold back (HFB) problem of N‐path filters, without increasing the input reference clock (fCLK ) frequency. The HFB at the N‐path filter is analyzed, and simple expressions are extracted to model this problem. Using the results of the analysis, an M‐of‐N‐path filter has been proposed that behaves like an M × N‐path filter in terms of HFB problem; however, the fCLK frequency of this structure is the same as an N‐path filter. To demonstrate the feasibility of the proposed idea, a 3‐of‐4‐path filter is designed, and its characteristics are compared with 4‐path and 12‐path filters by simulation. Impacts of different non‐idealities like clock‐phase error, mismatch, and parasitic capacitance are investigated. The transistor‐level implementation of this filter is performed in 0.18 µm Complementary Metal Oxide Semiconductor (CMOS) technology. The simulation results show that the filter has the pass‐band gain of 17 dB, tuning range of 0.2–1.2 GHz, −3 dB bandwidth of 25 MHz, quality factor of 8–48, 18 dB out‐of‐band rejection, 16 dB rejection of the third harmonic of switching frequency (fs ), and the noise figure of 4.35 dB (using ideal Gm cells) and 6.95 dB (for practical Gm cells). The strongest harmonic folding to the filter pass‐band occurs around 11fs with the attenuation of 23.8 dB. Each Gm cell draws about 12.4 mA from 1.8 V supply, and the out‐of‐band IIP3 and P 1 dB,CP are 17 and 4 dBm, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the problems of stability analysis, H performance analysis, and robust H filter design for uncertain Markovian jump linear systems with time‐varying delays. The purpose is to improve the existing results on these problems. Firstly, a new delay‐dependent stability criterion is obtained on the basis of a novel mode‐dependent Lyapunov functional. Secondly, a new delay‐dependent bounded real lemma (BRL) is derived. It is shown that the presented stability criterion and the BRL are less conservative than the existing ones in the literature. Thirdly, with the new BRL, delay‐dependent conditions for the solvability of the addressed H filtering problem are given. All the results obtained in this paper are expressed by means of strict linear matrix inequalities. Three numerical examples are provided to demonstrate the utility of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the problem of robust H filtering for switched linear discrete‐time systems with polytopic uncertainties is investigated. Based on the mode‐switching idea and parameter‐dependent stability result, a robust switched linear filter is designed such that the corresponding filtering error system achieves robust asymptotic stability and guarantees a prescribed H performance index for all admissible uncertainties. The existence condition of such filter is derived and formulated in terms of a set of linear matrix inequalities (LMIs) by the introduction of slack variables to eliminate the cross coupling of system matrices and Lyapunov matrices among different subsystems. The desired filter can be constructed by solving the corresponding convex optimization problem, which also provides an optimal H noise‐attenuation level bound for the resultant filtering error system. A numerical example is given to show the effectiveness and the potential of the proposed techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the fault detection problem is studied for a class of discrete‐time networked systems with multiple state delays and unknown input. A new measurement model is proposed to account for both the random measurement delays and the stochastic data missing (package dropout) phenomenon, which are typically resulted from the limited capacity of the communication networks. At any time point, one of the following cases (random events) occurs: measurement missing case, no time‐delay case, one‐step delay case, two‐step delay case, …, q‐step delay case. The probabilistic switching between different cases is assumed to obey a homogeneous Markovian chain. We aim to design a fault detection filter such that, for all unknown input and incomplete measurements, the error between the residual and weighted faults is made as small as possible. The addressed fault detection problem is first converted into an auxiliary H filtering problem for a certain Markovian jumping system (MJS). Then, with the help of the bounded real lemma of MJSs, a sufficient condition for the existence of the desired fault detection filter is established in terms of a set of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the effectiveness and applicability of the proposed techniques. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, the filtering problem for switched discrete‐time linear systems under asynchronous switching is addressed in the framework of dwell time, where ‘asynchronous switching’ covers more general and practical cases, for example, the switching lags caused by mode identification process are taken into consideration. Firstly, a novel dwell‐time dependent Lyapunov function (DTDLF) is introduced to solve stability and ?2 gain analysis problems. The main advantage of DTDLF approach is that the derived conditions are all convex in system matrices, so it is convenient to be applied into filter design with performance instead of weighted performance as many other previous results. Thus, on the basis of DTLDF, a dwell‐time dependent filter with time‐varying structure is proposed to achieve the desirable non‐weighted filtering performance. It is notable that the proposed approach can also easily characterize the relationships among filtering performance, dwell time, and asynchronous time. Two examples are provided to validate the theoretical findings in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the problem of finite‐time boundedness and dissipativity‐based filter design for networked control systems together with parameter uncertainties and random packet dropouts. The packet transmission information is defined by using Bernoulli distributed white sequence which characterizes the measurement conditions. Some new sufficient conditions are established to ensure that the filtering error system is stochastically finite‐time bounded and strictly finite‐time dissipative. These sufficient conditions to design the filter parameters are derived by using linear matrix inequalities and reciprocally convex approach. Finally, an example is given to validate the effectiveness of the proposed filter design.  相似文献   

19.
This paper presents the central finite‐dimensional H filter for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza–Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the paper reduces the original H filtering problem to the corresponding optimal H2 filtering problem, using the technique proposed in (IEEE Trans. Automat. Control 1989; 34 :831–847). The paper presents the central suboptimal H filter for the general case of nonlinear polynomial systems based on the optimal H2 filter given in (Int. J. Robust Nonlinear Control 2006; 16 :287–298). The central suboptimal H filter is also derived in a closed finite‐dimensional form for third (and less) degree polynomial system states. Numerical simulations are conducted to verify performance of the designed central suboptimal filter for nonlinear polynomial systems against the central suboptimal H filter available for the corresponding linearized system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the problem of finite‐time H filtering for a class of Markovian jump systems subject to partial information on the transition probabilities. By introducing some slack matrix variables in terms of probability identity, a less conservative bounded real lemma is derived to ensure that filtering Markovian jump systems is finite‐time stable. Finally, the existence criterion of the desired filter is obtained such that the corresponding filtering error system is finite‐time bounded with a guaranteed H performance index. An example is given to illustrate the efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号