首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glass substrates modified by carbon/silica composites are fabricated through a two-step process for the preparation of a superhydrophobic surface (water contact angle ≥ 150°). Carbon nanoparticles were first prepared through a deposition process on glass using a hydrothermal synthesis route, then the glass was modified by SiO2 using the hydrolysis reaction of tetraethylorthosilicate at room temperature. It is not only a facile method to create a superhydrophobic surface, but also helps to form a multi-functional surface with high adhesive forces.  相似文献   

2.
The influence of fabrication parameters on ZnO film properties has been analyzed through conducting several experiment processes to develop an appropriate deposition condition for obtaining highly c-axis textured films. A transducer with the structure of Al/ZnO/Al/Si was fabricated at low deposition rate and under a temperature of 380 °C in a mixture of gases Ar:O2 = 1:3, and RF power of 178 W. Pt/Ti was employed as the bottom electrode of the transducer fabricated in a suitable substrate temperature, which starts increasing at 380 °C with an increment of 20 °C for each 2 h stage of the deposition. Highly c-axis textured ZnO films have been successfully deposited on Pt/Ti/SiO2/Si substrate under feasible conditions, including RF power of 178 W, substrate temperature of 380 °C, deposition pressure of 1.3 Pa and Ar:O2 gas flow ratio of 50%. These conditions have been proposed and confirmed through investigating the influences of the sputtering parameters, such as substrate temperature, RF power and Ar:O2 gas flow ratio, on the properties of ZnO films.  相似文献   

3.
High quality ceramic thin films were fabricated by thin film deposition process in semiconductor field in order to fabricate high performance carbon/SiO 2 /Al 2 O3 membrane. α-Al 2 O 3 substrate was used as a supporting material. A severe thermal stress and rough surface for active ceramic top layer such as zeolite were observed. To overcome thermal stress, intermediate layer of SiO2 and diamond-like carbon (DLC) thin film were used. SiO 2 and DLC thin films on porous alumina support were deposited using plasma-enhanced chemical vapour deposition (PECVD). Homogeneous and smooth surfaces and interfaces of DLC/SiO 2 /Al 2 O 3 membrane were observed by FESEM. The phases of DLC and SiO 2 thin films were identified by X-ray diffraction pattern. Gas permeabilities of the nanofiltration membrane with DLC/SiO 2 /Al 2 O 3 were observed at various annealing temperatures. Mixed gas permeability of the membrane with 1 μm-thick SiO2 and 2 μm-thick DLC thin film annealed at 200 °C was ~18 ccm at 1018 mb back pressure.  相似文献   

4.
Undoped ZnO thin films were successfully deposited on Si substrates by RF magnetron sputtering with different substrate temperatures. The dependence was systematically investigated the structural, morphology, chemical state and optical properties of ZnO thin films. Crystal quality, growth orientation and optical properties of ZnO thin films were improved at proper substrate temperature (450 °C) whereas were deteriorated at higher temperature (600 °C). X-ray photoelectron spectroscopy showed that proper substrate temperature promoted the formation of Zn–O bonding, resulting in an improvement of film quality, while higher temperature decreased the formation of the Zn–O bonding and increased the oxygen vacancy due to formation of an amorphous SiO2 layer at the interface of ZnO and Si, resulting in a degradation of film quality. Moreover, the amorphous SiO2 layer is formed by oxygen related to the Zn–O bonding, mainly. Therefore, the experimental results indicate that the substrate temperature plays an important role in the deposition of ZnO film on Si substrate and needs to be carefully selected to suppress a formation of an amorphous SiO2 layer.  相似文献   

5.
Periodic arrays of Fe x Sn1?x O2 nanostructures were fabricated by glancing angle sputter deposition onto self-assembled close-packed arrays of 200-nm-diameter polystyrene microspheres. After annealing at 873 K for 3 h, all the films were crystallized to rutile SnO2 and maintained good thermal stability in the morphology. Compared with Fe x Sn1?x O2 flat films, arrays of Fe x Sn1?x O2 nanostructures possessed larger saturation magnetic moment and exhibited both perpendicular and in-plane magnetic anisotropy, resulting from the anisotropic morphology of Fe x Sn1?x O2 nanostructures. The EPR signal originating from the oxygen vacancies significantly varied with the Fe concentration and reached the strongest at x = 0.059, which is consistent with the saturation magnetization. It demonstrates that the oxygen vacancies are an important factor for the ferromagnetism of Fe x Sn1?x O2 films.  相似文献   

6.
In this paper, erosion wear behaviour of aluminium nitride (AlN) ceramics is studied. The influence of particle hardness and shape on erosion of the AlN surface is examined. The effect of varying the impingement angle on the weight loss and the roughness parameters of AlN ceramics testing sample is also determined. Therefore, erosive wear behaviour of AlN ceramics was investigated using SiC and SiO2 particles as erodents, at following impact angles: 30°, 45°, 60°, 75° and 90°. Scanning electron microscopy (SEM) was used to analyze the eroded surfaces in order to determine erosion mechanisms. The roughness parameters (Ra, Rz and Rmax), before and after erosion with SiO2 and SiC particles at 30° and 90° angles of impingement, respectively, were determined using a profilometer. It was found that the impact angle is influencing the erosion wear of the AlN ceramics and maximum erosion takes place at impact angle of 90°. The results indicate that hard, angular SiC particles cause more damage than softer, more rounded SiO2 particles.  相似文献   

7.
In this paper we report a multifunctional nanostructured surface on glass that, for the first time, combines a wide range of optical, wetting and durability properties, including low omnidirectional reflectivity, low haze, high transmission, superhydrophobicity, oleophobicity, and high mechanical resistance. Nanostructures have been fabricated on a glass surface by reactive ion etching through a nanomask, which is formed by dewetting ultrathin metal films (< 10 nm thickness) subjected to rapid thermal annealing (RTA). The nanostructures strongly reduce the initial surface reflectivity (~4%), to less than 0.4% in the 390–800 nm wavelength range while keeping the haze at low values (< 0.9%). The corresponding water contact angle (θ c) is ~24.5°, while that on a flat surface is ~43.5°. The hydrophilic wetting nanostructure can be changed into a superhydrophobic and oleophobic surface by applying a fluorosilane coating, which achieves contact angles for water and oil of ~156.3° and ~116.2°, respectively. The multicomponent composition of the substrate (Corning® glass) enables ion exchange through the surface, so that the nanopillars’ mechanical robustness increases, as is demonstrated by the negligible changes in surface morphology and optical performance after 5,000-run wipe test. The geometry of the nanoparticles forming the nanomask depends on the metal material, initial metal thickness and RTA parameters. In particular we show that by simply changing the initial thickness of continuous Cu films we can tailor the metal nanoparticles’ surface density and size. The developed surface nanostructuring does not require expensive lithography, thus it can be controlled and implemented on an industrial scale, which is crucial for applications.   相似文献   

8.
Cobalt orthosilicate (Co2SiO4) nanostructures and nanocomposites were successfully synthesized via a sol–gel method, by controlling different conditions. The gels were prepared starting from cobalt (II) acetatete tetrahydrate (Co(CH3COO)2·4H2O), tetraethyl orthosilicate, NH3 and carbohydrate at calcination temperature 500–700 °C for 5 h. We choose 700 °C as optimum calcination temperature base on XRD results. SEM images showed that NH3 and glucose are optimum catalysis and capping agent, respectively, in our experimental conditions. For the first time, glucose, fructose, sucrose, maltose and lactose were applied as capping agents to green synthesis of cobalt orthosilicates. The optical and magnetic properties of Co2SiO4 nanostructures were investigated by UV–Vis and VSM, respectively. Also, for the first time photocatalytic behavior of these nanostructures was evaluated using UV–Vis and degradation of methyl orange, methylene blue, erythrosine and eosine. DSC and TG curves of the nanocomposites showed both thermal stability and flame retardant property for Co2SiO4 nanocomposites prepared in the presence of the PS and PSU.  相似文献   

9.
Novel microwave dielectric ceramic Y3ZnAl3SiO12 were synthesized by solid-state route. The crystal structure of synthesized samples was characterized by X-ray diffraction and refined with Rietveld method. Microstructure and microwave dielectric properties of Y3ZnAl3SiO12 ceramics were investigated using Scanning Electron Microscopy and Hakki–Coleman method. X-ray data display that major phase of Y3ZnAl3SiO12 is isostructural to Y3Al5O12 with a cubic garnet structure and space group of Ia-3d, which is composed of (Al/Si)O4 tetrahedron, (Zn/Al)O6 octahedron and YO8 dodecahedron, besides minor Y2SiO5 secondary phase. The distribution of grain sizes is closer to Gauss distribution. Bulk density of samples has a similar variation curve with Q*f of samples. Y3ZnAl3SiO12 ceramics exhibit excellent microwave dielectric properties: εr?=?10.2, Q*f?=?37938.2 (@9.47 GHz), τ f ?=??31.7 ppm/°C at sintering temperature of 1500 °C. Our results indicate Y3ZnAl3SiO12 could be a potential material for millimeter wave communication systems as microwave substrates.  相似文献   

10.
The novel resorcinol–formaldehyde/SiO2 (RF/SiO2) hybrid aerogels were chosen to synthesize the cubic silicon carbide (β-SiC) nanostructures via a carbothermal reduction route. In this process, the in situ polymerized RF/SiO2 aerogels were used as both the silicon and carbon sources. The morphologies and structures of SiC nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and high-resolution transmission electron microscope (HRTEM) equipped with EDS. The effects of C/Si atomic ratios in RF/SiO2 aerogels and heat treatment temperatures on the formation of SiC nanomaterials were investigated in detail. It was shown that β-SiC nanowhiskers with diameters of 50–150 nm and high crystallinity were obtained at the temperatures from 1400 to 1500 °C. The role of the interpenetrating network of RF/SiO2 hybrid aerogels in the carbothermal reduction was discussed and a possible mechanism was proposed.  相似文献   

11.
Thick polyimide layers can be formed by using some unique properties of poly(dimethylsiloxane)-polyimide (PDMS/PMDA–ODA) blends followed by surface modification and deposition of a second layer of polyimide precursor chemicals. The method is based on the micro-phase separation characteristics of these blends to yield surfaces that have PDMS-like character. Upon modification with UV/ozone treatment, a surface that is essentially SiO x and hydrophilic in nature is produced. This surface is amenable to reaction and deposition of a second polyimide layer from polyimide precursors. The thicker polyimide layer has enhanced adhesion between the original layer of the blend and the new polyimide layer and this approach finds extensive applications for products that require thick polymer layers. Changes in surface energy for various blend compositions were monitored by measurement of advancing contact angle with de-ionized water. Contact angle for unmodified polyimide films was on the order of 70° and it increased to about 104° after blending with PDMS and curing. UV/ozone treatment reduced the contact angle of the doped polyimide to less than 5°. X-ray photoelectron spectroscopy (XPS) and angle resolved XPS (ARXPS) measurements were used to monitor the chemical compositions of the various surfaces. High-resolution XPS spectra in the Si2p region confirm the transformation of O–Si–C bonds in PDMS to SiO x , where x is about 2. Scanning electron microscopy (SEM) of some selected samples shows that the blends contain phase separation of the polymers at the surfaces of the samples. Atomic force microscopy (AFM) of siloxane-free polyimide, and PDMS/PMDA–ODA blends both prior to and after UV/ozone exposure, show that the films are essentially flat at short treatment times (less than 60 min). AFM also reveals the separation of PDMS into micro-domains at the cured film surface and throughout the layer below the surface of the blended films. Adhesion of a subsequently deposited polyimide layer to the modified polyimide surface was found to be greatly improved when compared to the adhesion obtained for deposition onto a pristine polyimide surface.  相似文献   

12.
In this work, in order to obtain the materials for low temperature co-fired ceramics applications, CaO–Al2O3SiO2 (CAS) based ceramics were synthesized at a low sintering temperature of 900 °C. The influences of Al2O3/SiO2 ratio on the microstructure, mechanical, electrical and thermal properties were studied. According to the X-ray diffractomer and scanning electron microscopy results, the addition of the Al2O3 is advantageous for the formation of the desired materials. Anorthite(CaAl2Si2O8) is the major crystal phase of the ceramics, and the SiO2 phase is identified as the secondary crystal phase. No new crystal phase appears in the ceramics with the increasing Al2O3 content. More or less Al2O3 addition would all worsen the sintering, mechanical and dielectric properties of CAS based ceramics. The ceramic specimen (Al2O3/SiO2 = 20/18.5) sintered at 900 °C shows good properties: high bending strength = 145 MPa, low dielectric constant = 5.8, low dielectric loss = 1.3 × 10?3 and low coefficient of thermal expansion value = 5.3 × 10?6 K?1. The results indicate that the prepared CAS based ceramic is one of the candidates for low temperature co-fired ceramic applications.  相似文献   

13.
The hydrogen sensing properties of multi-walled carbon nanotubes (MWNTs) synthesized by a hot filament CVD process are reported in this paper. The MWNTs were synthesized by a hot filament assisted chemical vapor deposition method using cobalt oxide nanoparticles as the catalyst on SiO2 surfaces. The MWNTs were characterized with Raman spectroscopy and scanning electron microscopy. Two-terminal test devices were fabricated by depositing a layer of MWNTs between prefabricated gold electrodes on SiO2 surfaces. The diameter of these MWNTs was in the 5–8 nm range. The sensitivity of carbon nanotubes was measured for different gas concentrations at different temperatures. It was found that the MWNTs were sensitive to H2 in low temperature regions of 140–350 °C and had a maximum sensitivity (80%) at 230 °C. No sensitivity was observed at a temperature lower than 140 °C or higher than 400 °C. Though bare MWNTs are not sensitive to H2 at room temperature, they exhibited very good sensing characteristics in the 140–300 °C range.  相似文献   

14.
ZnS:Mn2+ quantum dots (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) core-shell-shell nanocomposites have been successfully fabricated by free radical polymerization method. The average diameter and LCST of ZnS:Mn2+ QDs Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) (NIPAAm:AAm=90:10) nanocomposites was about 200?nm and 41.1°. It possessed a strong yellow-orange emission peak centered at 589?nm from the Mn2+ 4T1-6A1 transition and the desired superparamagnetic property at room temperature. The DOX encapsulation efficiency and loading capacity was 88% and 15.3 wt%, respectively. The nanocomposites showed the faster drug release behavior at 43?°C than that at 25?°C in vitro release experiment, and exhibited no significant cytotoxicity against the HeLa, HepG2 and HEK293 cell lines. Red fluorescence was observed in the cytoplasm of HeLa cells, confirming its application for biolabeling. Effective tumor inhibition was realized in vivo without the induction of toxicity in mice.
ZnS:Mn2+ (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) nanocomposites showed the red fluorescence in the cytoplasm of HeLa cells, faster drug release behavior at 43?°C than that at 25?°C in vitro, and effective tumor inhibition in vivo, confirming its application for drug delivery.
  相似文献   

15.
Zinc oxide (ZnO) comb-like nanostructures were successfully synthesized on the silicon substrate without a catalyst via chemical vapour deposition. The morphology and crystal structure of the product were characterized by scanning electron microscope and X-ray diffractometer. In this research, a simple gas sensor was fabricated based on the principle of change in resistivity due to oxygen vacancies, which makes its surface chemically and electrically active. The fabricated ZnO nanostructures proved to be quite sensitive to low concentration of \(\hbox {H}_{2}\hbox {S}\) gas at room temperature. The sensitivity and response time were measured as a function of gas concentrations. Small response time (48–22 s) and long recovery time (540 s) were found at \(\hbox {H}_{2}\hbox {S}\) gas concentrations of 0.1–4 ppm, respectively. ZnO comb-like structures are considered as the most suitable materials for gas sensor fabrication due to their high sensing properties. These nanostructures growth and \(\hbox {H}_{2}\hbox {S}\) gas sensing mechanism were also discussed.  相似文献   

16.
Multiferroic BiFe0.95Co0.05O3 thin films were fabricated on Pt/Ti/SiO2/Si substrates at various temperatures by pulsed laser deposition. It was found the deposition temperature had great effects on phase purity, orientation, microstructure and multiferroic properties of these films. The optimized deposition temperature was close to 600?°C. Polarization–electric field (P–E) and magnetization–magnetic field (M–H) hysteresis loops at room temperature were observed simultaneously in the films fabricated at 600?°C. The remnant polarization, coercive electric field (P r , E c ) and the remnant magnetization, coercive magnetic field (M r , H c ) of the films deposited at 600?°C were (0.95?μC/cm2, 31?kV/cm) and (0.59?emu/cm3, 130 Oe), respectively. These results might have implications for further investigations on high quality BiFe0.95Co0.05O3 multiferroic films.  相似文献   

17.
The SrFe12O19/SiO2/TiO2 nanostructures with hard magnetic core were successfully synthesized through the facile and efficient wet chemical processes. At first, nanocrystalline strontium hexaferrite (SrFe12O19) powder was prepared using a new co-precipitation route in ethanol/water media. In the next step, SrFe12O19/SiO2 composites were produced by well-known Stöber method using tetraethyl orthosilicate as precursor. Finally titania was coated on SrFe12O19/SiO2 composite particles using titanium n-butoxide precursor. The core/shell/shell nanostructures have been characterized by means of X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectra, field emission scanning electron microscopy, and transmission electron microscopy equipped with an energy-dispersive X-ray spectroscopy detector. The catalytic activity of SrFe12O19/SiO2/TiO2 composites has been investigated in the degradation of methylene blue dye under UV illumination. The results indicated that the obtained SrFe12O19/SiO2/TiO2 composite has photo-catalytic properties and can be retrieved by magnetic separation. The photo-degradation of methylene blue dye was about 80% in the presence of photo-catalyst powder at irradiation time of 180 min. Recycled composite particles could be used again.  相似文献   

18.
Cu dendritic nanostructure crystals have been synthesized from CuCl2?2H2O in an alkaline aqueous solution at temperature of 200?°C. The morphology and size can be tunable by changing the reaction temperature and time. It can be seen from the SEM images that the secondary branches are parallel and 60° angle deflection from the trunk with the length of secondary branches up to 10 μm, quite different from the Cu dendrites reported before. The XRD pattern of the Cu dendritic structure indicates a pure face-centered cubic phase with symmetrical group of \(Fm\bar{3}m(225)\) and lattice constant a=3.615 Å. The formation mechanism of the Cu dendritic nanostructures has been discussed in details.  相似文献   

19.
In this paper, the effects of different annealing processes on the texture, surface morphology, and piezoelectric properties of aluminum nitride (AlN) thin films and the performance of AlN-based surface acoustic wave (SAW) devices were systematically investigated. Based on the crystallinity and the morphology results, it is evident that in-situ annealing method is superior to ex-situ annealing. For the AlN thin films, the crystallization and piezoelectricity were both enhanced and then receded as the annealing temperature increased from 300 to 600?°C. We demonstrated that good (002) orientation, excellent grain distribution and high relative piezoelectric coefficient of the AlN thin films were achieved via in-situ annealing at 500?°C. Meanwhile, the AlN thin films exhibited excellent polarization properties and polarization maintaining characteristics. Additionally, the uniform interdigital transducer (IDT) with 8 μm period (finger width?=?2 μm) were designed and the IDT/AlN/SiO2/Si SAW devices with the center frequency f 0 of 495 MHz and insert loss of ?24.1 dB were fabricated.  相似文献   

20.
The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its defects/vacancies. Herein, we report a facile solvothermal route to synthesize three-dimensional (3D) SnS nanostructures formed by {131} faceted nanosheet assembly. The 3D SnS nanostructures were calcined at temperatures of 350, 400, and 450 °C and used as counter electrodes, before their photocurrent properties were investigated. First principle computation revealed the photocurrent properties depend on the defect/vacancy concentration within the samples. It is very interesting that characterization with positron annihilation spectrometry confirmed that the density of defects/vacancies increased with the calcination temperature, and a maximum photocurrent was realized after treatment at 400 °C. Further, the defect/vacancy density decreased when the calcination temperature reached 450 °C as the higher calcination temperature enlarged the mesopores and densified the pore walls, which led to a lower photocurrent value at 450 °C than at 400 °C.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号