首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
首先以甲基丙烯酸二甲氨基乙酯(DMAEMA)为分散助剂得到石墨烯/MMA分散液,然后采用乳液聚合法制备了PMMA/石墨烯纳米复合材料。通过傅里叶变换红外光谱仪、拉曼光谱仪、扫描电子显微镜、透射电子显微镜、差示扫描量热仪、热重分析仪以及电子万能试验机、冲击试验机、高阻计等仪器设备对PMMA/石墨烯纳米复合材料的结构与性能进行分析和测试。结果表明,通过DMAEMA的助分散作用,实现了PMMA对石墨烯的完全包覆,并且DMAEMA的胺基与石墨烯表层官能团间存在强相互作用;石墨烯的引入提高了PMMA/石墨烯纳米复合材料的热稳定性,玻璃化转变温度(Tg)增加约6.4 ℃、初始热分解温度增加约38.3 ℃;石墨烯的引入改善了PMMA/石墨烯纳米复合材料的抗静电性能及拉伸性能,但冲击性能略有下降。  相似文献   

2.
陈楚楚  李大纲 《塑料工业》2013,(12):21-24,28
利用壳聚糖(Chitosan)纳米纤维对聚甲基丙烯酸甲酯(PMMA)进行增强改性,通过浸渍法制备Chitosan/PMMA复合薄膜材料,并利用傅里叶红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、热性能分析仪(DMA、TMA)、紫外分光光度计等对其性能进行表征。结果表明,浓碱处理甲壳素能够获得壳聚糖;薄膜的断面呈现明显的层状结构;Chitosan/PMMA复合材料的透光率比纯纤维膜提高了约11%;在PMMA中添加壳聚糖纳米纤维能够显著降低树脂的热膨胀系数(CTE),在20~100℃的范围内,添加60%壳聚糖纳米纤维的复合材料的CTE为33.85×10-6K-1,接近于纯PMMA树脂CTE的1/6;Chitosan/PMMA复合样品的储能模量达到了6 GPa,较纯PMMA增加了2倍。  相似文献   

3.
采用原位合成与溶液共混相结合的方法,制备了短切碳纤维增强纳米羟基磷灰石(HA)/聚甲基丙烯酸甲酯(PMMA)生物复合材料。研究了碳纤维的含量和长度对HA/PMMA复合材料结构和力学性能的影响。采用万能材料试验机和扫描电子显微镜对复合材料的力学性能及断面的微观形貌进行了测试和表征。结果表明:碳纤维在HA/PMMA复合材料中分布均匀,有效提高了复合材料的力学性能;碳纤维含量为4%时,复合材料的拉伸强度、弯曲强度、压缩强度和弹性模量等均达到最大值;复合材料的断裂伸长率随碳纤维含量的增加而减小;当碳纤维含量一定时,随其长度的增加,复合材料的拉伸强度、弯曲强度和弹性模量均增加,但断裂伸长率降低。  相似文献   

4.
采用非晶态聚甲基丙烯酸甲酯(PMMA)与结晶型聚偏氟乙烯(PVDF)熔融共混.制备了PVDF/PMMA复合材料。利用Hilderbrand的溶解参数原则、差示扫描量热法(DSC)和微分热重法(DTG)分析了PVDFfPMMA共混物的相容性和热性能,并用X射线衍射仪和扫描电子显微镜研究了共混片材的微观结构与形态。结果表明,PMMA与PVDF具有良好的相容性,PMMA的加入降低了PVDF的结晶能力和熔融温度;随着PMMA的含量增加,PVDF的分解温度降低;PVDF的结晶度降低,球晶尺寸增大。另外,PMMA的引入改变了PVDF的结晶结构,导致了β相形成。  相似文献   

5.
采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100nm之间,得到的胶膜力学性能有很大的提高。  相似文献   

6.
POSS/PMMA纳米复合材料的制备及性能   总被引:1,自引:0,他引:1  
将笼形纳米粒子八己烯基多面低聚倍半硅氧烷(Oh-POSS)与聚甲基丙烯酸甲酯(PMMA)通过溶液共混法制备无机/有机纳米复合材料.利用FTIR对复合材料的结构进行表征.SEM观察结果显示:当Oh-POSS含量较小时,复合材料薄膜具有较为平整的表面,无机粒子Oh-POSS均匀地分散在PMMA基体之中;随着Oh-POSS含量的增加,Oh-POSS逐步发生聚集现象.TGA、DSC以及拉伸试验结果表明:Oh-POSS含量较低时,Oh-POSS的引入能明显改善材料的热稳定性和力学性能,但当Oh-POSS含量较高时,热学和力学性能下降.  相似文献   

7.
采用悬浮聚合法制备了聚甲基丙烯酸甲酯/蒙脱土(PMMA/MMT)纳米复合材料,利用X射线衍射仪、透射电子显微镜和傅里叶变换红外光谱等手段表征了复合材料的结构,研究了不同改性剂对复合材料结构的影响。通过热重分析考察了复合材料的热性能。结果表明,通过悬浮聚合可以成功制备剥离型纳米复合材料,PMMA基体与MMT可以产生较强的相互作用。MMT的加入可以显著提高复合材料的热稳定性。当MMT含量为10%(质量分数,下同)时,PMMA的最大分解温度提高了15℃。  相似文献   

8.
利用Na2SiO3的改性机理来纯化Na基蒙脱土,通过调节体系的pH值及其聚合阴离子的作用,使蒙脱土边面带负电荷,有效调节蒙脱土在水中的分散状态,使其与有机阳离子的交换反应充分进行,得到有机蒙脱土的阳离子交换量达115mmol/110g,并且能均匀分散在甲基丙烯酸甲酯9MMA)单体中,借助普通的乳液聚合方法,制备出PMMA/有机蒙脱土纳米复合材料,复合材料经甲苯抽提,FTIR,XRD,TEM,DSC,TGA等一系列分析方法表征,表明有机蒙脱土在PMMA基体中已达到纳米级分散,多数已发生剥离,而且复合材料的热性能较纯PMMA有很大提高,其Tg和Td最大分别提高31.45℃和42.13℃。  相似文献   

9.
可降解聚碳酸亚丙酯复合材料的性能   总被引:1,自引:0,他引:1  
通过聚碳酸亚丙酯(PPC)与聚乳酸(PLA)的共混,提高PPC的热性能、力学性能、生物降解性。利用扫描电子显微镜(SEM)、多晶X衍射(XRD)、差示扫描量热(DSC)、热重分析(TG)、拉伸力学实验研究了复合材料的性能。实验结果表明,聚合物之间没有发生化学反应,共混物为部分相容的体系;复合材料的玻璃化转变温度最高比PPC提高30℃,分解温度Td5%最多比PPC提高42℃,Td50%最多比PPC提高67℃;PLA的加入使复合材料的降解性能优于PPC,40d降解后复合材料最大失重率为33.37%,是PPC的9倍;PPC-PLA复合材料有良好的成膜性,制备的薄膜透明均匀,复合薄膜材料拉伸强度为36~58MPa,杨氏模量最大为2943MPa。  相似文献   

10.
采用表面接枝的方法,在室温下用硅烷偶联剂改性纳米(nano)-SiO2,经引发剂引发甲基丙烯酸甲酯聚合包覆,并以其为填充物与聚甲基丙烯酸甲酯(PMMA)熔融共混,制得PMMMnano-SiO2复合材料。力学性能测试表明,随着改性nano-SiO2用量的增加,PMMA/nano-SiO2复合材料的缺口冲击强度和拉伸强度均明显提高,当w(nano—SiO2)为3%时,PMMA/nano—SiO2复合材料的综合力学性能最佳,缺口冲击强度和拉伸强度分别提高了94.7%和28.O%:  相似文献   

11.
The focus of the current study is to investigate the influence of Co–Al layered double hydroxide (LDH) on the morphological, thermal, and mechanical features of poly(methyl methacrylate) (PMMA)‐based nanocomposites. Sodium dodecyl sulfate modified Co–Al LDH was synthesized by single step coagulation method. The PMMA nanocomposites containing different loadings of nanofiller (1–7 wt %) and polystyrene‐grafted maleic anhydride compatibilizer (5 wt %) were melt intercalated via twin screw extruder and later subjected to injection molding to prepare mechanical testing samples. The different properties of PMMA nanocomposites were studied by using XRD, TEM, FTIR, DSC, TGA, tensile, flexural, impact, and flammability analysis. The result of XRD analysis suggested the exfoliated morphology of the nanocomposite while the TEM demonstrated the intercalated structure at higher loading of LDH. The thermal characterization results revealed that thermal properties were improved by the addition of Co–Al LDH, whereas the flammability test exposed that dripping was minimum at 7 wt % loading. The mechanical properties exhibited that optimum results were obtained at 1 wt % loading of Co–Al LDH. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45774.  相似文献   

12.
In this paper Poly(methylmethacrylate)/Polypyrrole-Graphene Oxide (PMMA/PPy-GO) nanocomposites were prepared using in-situ chemical polymerization method and its structure and properties were studied. Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis confirmed that PPy nanopraticles covered the GO nanosheets surface and PMMA/PPy-GO nanocomposite were prepared successfully. The mechanical, electrical and thermal stability of the PMMA nanocomposites were also investigated using Tensile, Impact, Thermogravimetric analysis (TGA) and four-point probe methods. Correlation between direct morphological observation and final properties demonstrated that network structure formed by PPy-GOs in PMMA matrix. Tensile analysis showed that the addition of 0.4 wt % PPy-GO hybrids lead to 24.4 % enhancement in the Young’s modulus of PMMA compared to 5.0 % improvement that achieved at the same loading level of GO. Electrical conductivity measurement showed that dispersion of PPy-GO in PMMA matrix increased AC conductivity in the range of 8 orders of magnitude compared to PMMA. TGA analysis showed that the thermal stability of the PMMA nanocomposites improved over 20 ?C.  相似文献   

13.
Foaming behavior of poly(methyl methacrylate) (PMMA)/multi‐walled carbon nanotubes (MWCNTs) nanocomposites and thermally‐insulating, electrical, and mechanical properties of the nanocomposite foams are investigated. PMMA/MWCNT nanocomposites containing various amounts of MWCNTs are first prepared by combining solution and melt blending methods, and then foamed using CO2. The foaming temperature and MWCNT content are varied for regulating the structure of PMMA/MWCNT nanocomposite foams. The electrical conductivity measurement results show that MWCNTs have little effect on the electrical conductivity of foams with large expansion ratio. Thermal conductivities of both solid and foamed PMMA/MWCNT nanocomposites are measured to evaluate their thermally insulating properties. The gas conduction, solid conduction, and thermal radiation of the foams are calculated for clarifying the effects of cellular structure and MWCNT content on thermal insulation properties. The result demonstrates that MWCNTs endowed foams with enhanced thermal insulation performance by blocking thermal radiation. Moreover, the compressive testing shows that MWCNTs improve the compressive strength and rigidity of foams. This research is essential for optimizing environmentally friendly thermal insulation nanocomposite foams with enhanced thermal‐insulation and compressive mechanical properties.  相似文献   

14.
Poly(methyl methacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were synthesized by a simple technique of a monomer casting method, bulk polymerization. The products were purified by hot acetone extraction and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), examination of their mechanical properties, and light transmittance testing. Although XRD data did not show any apparent order of the MMT layers in the nanocomposites, TEM revealed parallel MMT layers with interlamellar spacings of an average of 9.8 nm and the presence of remnant multiplets of nonexfoliated layers. Therefore, PMMA chains were intercalated in the galleries of MMT. DSC and TGA traces also corroborated the confinement of the polymer in the inorganic layer by exhibiting the increase of glass‐transition temperatures and mass loss temperatures in the thermogram. Both the thermal stability and the mechanical properties of the products appeared to be substantially enhanced, although the light transmittances were not lost. Also, the materials had excellent mechanical properties. Measurement of the tensile properties of the PMMA/MMT nanocomposites indicated that the tensile modulus increased up to 1013 MPa with the addition of 0.6 wt % MMT, which was about 39% higher than that of the corresponding PMMA; the tensile strength and Charpy notched impact strength increased to 88 MPa and 12.9 kJ/m2, respectively. As shown by the aforementioned results, PMMA/MMT nanocomposites may offer new technology and business opportunities. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 348–357, 2005  相似文献   

15.
Poly(methyl methacrylate) grafted silica (SiO2‐g‐PMMA) was synthesized via in situ suspension polymerization. To achieve better uniform dispersion, hexadecyltrimethylammonium bromide (CTAB) was introduced into xylene to manipulate SiO2 aggregation. SiO2‐g‐PMMA or SiO2 was incorporated into PMMA matrix by in situ polymerization to prepare PMMA‐based nanocomposites. The effect of CTAB amount, in the range 0–35 wt %, on the modification was evaluated by DLS, TGA, and FTIR. Furthermore, morphology, optical, mechanical, and thermal properties of PMMA nanocomposites was characterized by SEM, UV–vis, DMA, and TGA. Owing to surface functionalization, SiO2‐g‐PMMA exhibited far more excellent compatibility and dispersion in matrix compared with SiO2. Surface hardness and thermal properties of nanocomposites were enhanced significantly under the premise in high transparency. It is expected that transparent nanocomposites with promising scratch‐resistance could have wide applications, such as airplane shielding window and daily furniture. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44612.  相似文献   

16.
A high molecular weight polysilsesquioxane (LPMSQ)/ZnO nanocomposite was prepared by blending a methacryl‐substituted polysilsesquioxane and PMMA‐coated ZnO nanoparticle (NP) followed by UV‐curing process. These LPMSQ/ZnO nanocomposites gave high thermal and mechanical stabilities originated from the rigid ladder structured siloxane backbone of LPMSQ. The polysilsesquioxane and surface‐modified ZnO nanoparticles showed excellent compatibility between MMA groups in LPMSQ‐ and PMMA‐capped ZnO nanoparticles to give well‐dispersed LPMSQ/ZnO nanocomposites. Mechanically pliant and flexible free standing films were obtained, and the photo and optical properties of these hybrid nanocomposites were examined. The high photoluminescent properties were maintained even after severe thermal treatments exceeding 400°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42333.  相似文献   

17.
The poor dispersion of carbon black (CB) in thermoplastic polymers has provided a space for improving the various properties of nanocomposites. In this study, nanoclay (NC) was introduced into CB/thermoplastic composites to improve the dispersion of CB and, finally, to improve the thermal or mechanical performance. We noticed that there was a simultaneous enhancement in the mechanical and thermal performances of the nanocomposites because of the combination of the NC and CB. The information obtained from the mechanical and thermal studies indicated that the properties were improved to an appreciable extent because of the plastic–plastic/CB/NC combination. The tensile strength of polycarbonate (PC) was observed to be enhanced by 9.4% only because of the addition of CB, although when poly(methyl methacrylate) (PMMA) was used as a matrix material along with PC, the tensile strength improved by 25%, although the tensile strength of PMMA is much lower than that of PC. This confirmed that the tensile properties of the polymer composites also depended on the plastic–plastic interaction phenomenon. Moreover, the tensile strengths of the different blended nanocomposites system increased by around 42.5% with the addition of NC. A significant improvement of 22% was achieved in the thermal stability of the PMMA composites with the addition of CB. However, the addition of NC provided further improvement in the thermal decomposition temperature by only 3.7%. This showed that the thermal stability of the polymer nanocomposites was slightly affected by the addition of NC. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41477.  相似文献   

18.
The influence of organic modifiers on intercalation extent, structure, thermal and mechanical properties of poly(methyl methacrylate) (PMMA)–clay nanocomposites were studied. Two different organic modifiers with varying hydrophobicity (single tallow versus ditallow) were investigated. The nanocomposites were prepared from melt processing method and characterized using wide angle X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. Mechanical properties such as tensile modulus (E), break stress (σbrk), and % break strain (εbrk) were determined for nanocomposites at various clay loadings. Extent of PMMA intercalation is sufficient and in the range 9–15 Å depending on organoclay and filler loading. Overall thermal stability of nanocomposites increases by 16–30°C. The enhancement in Tg of nanocomposite is merely by 2–4°C. With increase in clay loading, tensile modulus increases linearly while % break strain decreases. Break stress is found to increase till 4 wt % and further decreases at higher clay loadings. The overall improvement in thermal and mechanical properties was higher for the organoclay containing organic modifier with lower hydrophobicity and single tallow amine chemical structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
《Ceramics International》2020,46(5):5828-5840
Currently, the organic-inorganic hybrid materials have gained tremendous importance due to their unique applications in different technological fields. In this connection, the chemical synthesis of poly(methyl methacrylate) (PMMA) and its binary and ternary nanocomposites by in-situ bulk polymerization with various percentages of reduced graphene oxide (RGO) and hematite nanoparticles (Fe2O3 NPs) is presented. Dielectric properties of binary and ternary nanocomposites are investigated in the frequency range of 25 Hz-1 MHz for each composition. Ternary nanocomposite of PMMA with RGO:Fe2O3 NPs (2:2 wt%) exhibits a substantial enhancement of the dielectric constant up to ≈308 and suppressed dielectric loss of 0.12 at 25 Hz. Appearance of three types of interfaces in ternary PMMA nanocomposites accounts for the superior dielectric properties due to the accumulation of greater number of charges at the interfaces as compared to the binary nanocomposites with only one interface. The same optimized ternary PMMA nanocomposite shows a remarkable improvement in the thermal conductivity (2.04 W/mK), which is attributed to the formation of efficient thermal conducting pathways contributed by the synergic reduction in thermal resistance of both RGO and Fe2O3 NPs (2:2 wt%) relative to the binary nanocomposites PMMA/2 wt% RGO (1.04 W/mK) and PMMA/2 wt% Fe2O3 (0.98 W/mK). Thus, ternary nanocomposites prove to be the excellent candidates for thermal management applications. Furthermore, a comparison of the mechanical strength and thermal stability for all the binary and ternary nanocomposites is presented. In the last section, respective precursors and optimized binary and ternary nanocomposites are characterized by XRD, FTIR and SEM which reveal the strong interaction of respective nanofillers into PMMA matrix.  相似文献   

20.
A number of batch polymerizations were performed to study the effect of pristine nanoparticle loading on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. In order to improve the dispersion of silica nanoparticles in PMMA matrix, the silanol groups of the silica are functionalized with methyl methacrylate groups and modified nanoparticles were used to synthesize PMMA/modified silica nanocomposites via RAFT polymerization. Prepared samples were characterized by thermogravimetric analysis (TGA), dynamic light scattering (DLS), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). According to results, introduction of modified nanoparticles results in better thermal and mechanical properties than those of pristine nanoparticles. Also, surface modification and increasing silica nanoparticles result in variation of thermal degradation behavior of nanocomposites. The best improvement of mechanical and thermophysical properties is achieved for nanocomposites containing 7 wt. % silica nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号