首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase evolution and magnetic properties of melt-spun Pr10Fe74-xCo10 xC4B4(x=0,2,4,6,8 ) alloy ribbons were investigated. Increasing the Co content is found to promote the generation of the 2: 14:1 phase, which results in a significant increase of coercivity and remanence.  相似文献   

2.
The structure and magnetic hysteresis properties of the cast Sm_(1-x)Zr_x(Fe_(0.92)Ti_(0.08))_(10)(x = 0-0.3)alloys and melt-spun ribbons prepared from them were studied.In the cast alloy with x0.2, a considerable amount of the eutectic phase is found in the SEM micrographs.Analysis of the temperature dependences of the magnetic susceptibility and XRD patterns allows amorphous state in the as-spun ribbons with x0.2 to be determined.The specific magnetization measured in a field of 17 kOe and remanence decrease with increasing annealing temperature from 800 to 900 ℃ and weakly depend on Zr concentration.The maximal value of coercivity Hc = 4.7 kOe is obtained on the ribbons with x = 0.2 after annealing at 850℃ for 10 min.After additional hydrogenation of the ribbons,both the coercivity and remanence increase by 54% and 7%,respectively.  相似文献   

3.
Crystallization and magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets have been investigated by annealing the as-spun ribbons with magnetic field.The crystallization process was accelerated by field annealing.The hysteresis loop became to be fat by magnetic annealing at 645 oC for 4 min,which was 690 oC for ribbons annealing without magnetic field.The relative content of α-Fe phase was increased from the results of XRD.The strength of the magnetic field had no obvious influence on the remanence and coercivity,but modified the squareness of hysteresis loop.  相似文献   

4.
We investigated the structural and magnetic properties of Sm(Co0.7Fe0.1Ni0.12Zr0.04B0.04)7.5 melt spun ribbons. Samples were arc melted then melt spun at 37 m/s up to 55 m/s to obtain ribbon for powdering. Annealing was performed in argon atmosphere for 30- 75 min at 600-870 oC. In as-spun ribbons the hexagonal SmCo7 (TbCu7-type of structure) of crystal structure was determined from x-ray diffraction patterns, while fcc-Co has been identified as a secondary phase. After annealing, the 1:7 phase of the as-spun ribbons transformed into 2:17 and 1:5 phases. X-ray patterns for as-milled powders exhibited very broad peaks making it difficult to identify a precise structure but repre-sented the 1:7 structure after annealing at low temperature (650 oC). TEM analysis showed a homogeneous nanocrystalline microstructure with average grain size of 30-80 nm. Coercivity values of 15-27 kOe were obtained from hysteresis loops traced up to a field of 5 T. The co-ercivity decreased as temperature increases, but it maintained values higher than 5 kOe at 380 oC. The maximum energy product at room temperature increased, as high as 7.2 MGOe, for melt-spun isotropic ribbons produced at higher wheel speeds. Anisotropic ribbons had a maximum energy product close to 12 MGOe.  相似文献   

5.
In order to improve and stabilize the magnetic properties of nanocomposite Nd2Fe14B/α-Fe magnetic alloys by a compositional adjustment, small amount of Dy and/or Co was added to Nd9Fe84B7 alloys. DTA analysis on the amorphous of the alloys took place as the soft magnetic phases were crystallized, and then the hard magnetic Nd2Fe14B was precipitated from them. While α-Fe and a metastable 1:7 (TbCu7-type) phase were formed simultaneously in Dy and Co-free alloys, they were crystallized separately at different temperatures after Dy or Co was added. This phase separation occurred more clearly in the Dy-treated alloys and the other soft magnetic phase Fe3B was also stabilized by Dy and/or Co. The 1: 7 phase that was stabilized by Dy and/or Co was not eliminated at 700 ℃, decreasing magnetic properties of the alloys. It was eventually disappeared above 725 ℃, but Fe3B was not eliminated even at 750 ℃ when Dy was added more than 0.5 at% or Co was added more than 2.0 at%. Amount of Nd2Fe14B in the alloys tended to increase as Dy addition increased,whereas Co addition did not lead to any appreciable change in the ratio of α-Fe and Nd2Fe14B. Moreover, Dy addition apparently increased coercivity of an alloy while Co addition had a beneficial effect on remanence. The grains in the Dytreated alloys were usually finer than those in the Co-treated alloys. The grain size of both α-Fe and Nd2Fe14B in the alloys exhibiting mr ≥ 0.72 was in the range of 20 ~ 40 nm or even larger 50 nm, which is larger than the theoretical optimum size ( ~ 10 nm). Typical magnetic properties obtained from a Nd7.5Dy1.5Fe82.5Co1.5B7 alloy annealed for 12 min at 725 ℃were iHc=4.85 kOe, Br= 11.32 kG, (BH)max = 15.73 MGOe, and mr=0.73.  相似文献   

6.
Sintered NdDy-Fe-B magnets were made from strip cast flakes by powder metallurgy method. For the magnet with 6wt.% Dy substituted Nd, a remarkable coercivity increase of 70% was obtained after aging at 900°C for 2h and a high coercivity of 23.5 kOe was achieved after aging at 520°C for 2h. The average diameter of the oxide particles decreased during the following 900°C aging treatment. Dy and O diffusion from oxide particles to Nd-rich phase during the aging process was observed. The oxide evolution and Dy element diffusion were helpful to the coercivity enhancement.  相似文献   

7.
Rapidly solidified nanocrystalline α-Fe/Nd2Fe14B alloys with enhanced coercivity were obtained by melt spinning.The effects of Ti addition on the microstructore and magnetic properties of the nanocomposite α-Fe/Nd2Fe14B alloys were investigated by X-ray diffraction(XRD)and superconducting quantum interference device(SQUID)magnetometer.The analysis of XRD showed that Vα-Fe estimated to be about 35.3% in the Ti-free α-Fe/Nd2Fe14B nanocomposites decreased down to 26.5% as the addition of was 5 at.% Ti.Accordingly,adding Ti resulted in relevant improvements of magnetic properties,especially of the coercivity Hc from 595 kA/m up to 1006 kA/m.The dependence of Mirrev(H)/2Mr on the reverse field H indicated that nucleation was the dominating mechanism for the magnetization reversal in these nanocomposites.The analysis of the temperature dependence of the demagnetization curve in the α-Fe/Nd2Fe14B nanocomposite magnets indicated that a reduction of αex could play a leading role in an increase in the coercivity of Ti-doped sample.  相似文献   

8.
Amorphous Fe62-xNi19CoxCu0.1Si3.8B14Cr1.1(x=0,1,5,10)ribbons were annealed under magnetic field and tensile stress,respectively,and their magnetic properties were investigated.Fe73.5Cu1Nb3Si15.5B7 and Fe66Ni10-Cu1Nb3Si11B9 nanocrystalline alloy ribbons were also fabricated for comparison.Excellent DC tolerant property was obtained in the amorphous FeNiCoCuSiBCr ribbons after thermomagnetic treatment and the constant permeable property was improved with increasing Co content.The relative permeability was constant up to the DC bias field of approximately 6×10-4,9×10-4,and 10×10-4 T and the values of relative permeabilityμrwere 1 650,1 200,and 1000 with the Co content being 0,5at.%,and 10 at.%,respectively.Besides,stress-annealed FeNiCoCuSiBCr alloy ribbons were proved to exhibit positive saturation magnetostriction constantλs.  相似文献   

9.
Amorphous ribbons with(Nd_(0.75)Pr_(0.25))_(9.5)Fe_(76)X_4B_(10.5)(X=Nb, Zr) nominal composition were annealed by conventional and microwave-assisted annealing furnaces, respectively. The thermal decomposition process, structure and magnetic properties of products were characterized by a thermal differential scanning calorimeter(DSC), X-ray diffraction(XRD) and a vibrating sample magnetometer(VSM). The addition of Nb and Zr increased the glass-forming ability(GFA) of as-spun ribbons. The proportion of Nd_2Fe_(14)B and α-Fe could be adjusted with power from 800 to 2000 W in microwave annealing process, during which the well-coupling between the soft and hard magnetic phase and higher coercivity reached up to 780.2 and 815.4 kA/m for(Nb,Zr)-doped alloys. The best magnetic properties of ribbons could be obtained by annealing at 650 oC for 10 min under the microwave power of 2000 W.  相似文献   

10.
In this study,the alloy ingots with nominal compositions of(Nd_(1-x)Ce_x)_(31)Fe_(bal)Co_(0.2)Ga_(0.1)B(x=0, 0.1 wt%,0.2 wt%, 0.3 wt%, 0.4 wt%, 0.5 wt%) were prepared and then melt-spun to form nanocrystalline ribbons at the wheel speed of 20 m/s. XRD results show that all melt-spun ribbons exhibit the tetragonal structure(Nd,Ce)_2 Fe_(14)B phase with the space group P42/mmm. The Curie temperature and lattice constant decrease with the increase of Ce content. The Curie temperature decreases gradually from 306 to 247 ℃with the increase of Ce content. Those results indicate that Ce element has been incorporated into Nd_2 Fe_(14)B main crystalline phase and formed(Ce,Nd)-Fe-B hard magnetic phase. It is also found that the remanence ratio(M_r/M_s) decreases from 0.693 to 0.663 and the coercivity(H_c) decreases from 18.7 to14.2 kOe with the increase of Ce content. However, a relatively high coercivity of 18.3 kOe for(Nd_(1-x)Ce_x)_(31)Fe_(bal)Co_(0.2)Ga_(0.1)B(x = 0.2) melt-spun ribbon is achieved. The coercivity is sensitive to microstructure. The AFM patterns show the sample(x = 0.2) has the most uniform and finest microstructure. The magnetization reversal behavior(δM plots) is discussed in detail. The positive δM value is observed in every sample, which confirms the existence of exchange coupling interaction. Evidently, theδM maximum value reaches 0.9 in the sample(x = 0.2). It is indicated that the intergranular exchange coupling effect is the strongest, which is consistent with coercivity enhancing.  相似文献   

11.
The effect of cobalt on the magnetic properties and anisotropy of HDDR anisotropic NdFeB was studied.It is found that Co is helpful for preparing anisotropic NdFeB with high coercivity. The research on the initial microstructure for NdFeB alloy indicates that Co tends to enter the crystal lattice of Nd-rich phase and some of Co atoms also enter the crystal lattice of Nd2Fe14B. The dissolution of Co changes the stability of Nd-rich phase and Nd2Fe14 B in H2 atmosphere and affects the kinetics of HDDR phase transformation. As a result, the NdFeB powder exhibits a high coercive force and a strong anisotropy.  相似文献   

12.
Crystallographic alignment and magnetic anisotropy were studied for NdxFe94-xB6 (x=8,9,10,11) ribbons prepared via melt-spinning. Effect of Nd content and wheel speed on the crystal structure and magnetic properties of the ribbons was investigated. Both the free and wheel side of the ribbons could obtain strong c-axis crystal texture of Nd2Fe14B phase perpendicular to the ribbons surface at low wheel speed,but the texture weakened gradually with the increase of the wheel speed. Increase of Nd content led to better formation of crystal texture in the ribbons,indicating that the α-Fe phase might undermine the formation of crystal texture. Magnetic measurement results showed that the magnetic anisotropy of the ribbons exhibited corresponding behavior with the invariance of the c-axis crystal texture of Nd2Fe14B phase in the ribbons,and the coercivity of the ribbons rose with the increase of both Nd content and wheel speed during melt-spun process.  相似文献   

13.
This work tries to improve the magnetic properties by multi-element doping in the form of a ternary alloy.SmCo5+χwt%Al-Cu-Fe(x=0-7)ribbons melt-spun at 40 m/s were produced by adding Al82.8Cu17Fe0.2alloy into SmCo5 matrix,and their phases,microstructure,and magnetic properties were investigated.The results show that both x=0 and 3 ribbons form a cellular microstructure.Al-Cu-Fe addition reduces the content of the Sm2(Co,M)7 cell wall,narrows its width,and forms the local disordered micro-regions and solute-segregation nanoclusters in the Sm(Co,M)5 grains.With x increasing to5,Al-Cu-Fe addition promotes the phase separation between and within grains of the SmCo5-based alloy.The Al-Cu-Fe addition can simultaneously improve the coercivity and magnetization of the SmCo5-based ribbons,in particular,the magnetization of the x=3 ribbons increases by 35%,while the coercivity of the x=5 ribbons increases by 3.9 times.Finally,the microstructure evolution models are built up,and the relationship between the microstructure and the magnetic properties is discussed.  相似文献   

14.
The Nd60Fe20Al8Co10B2 alloy was prepared by suction casting of the molten alloy into a copper mold under argon atmosphere. The micro-structural and magnetic property changes in the Nd60Fe20Al8Co10B2 alloy during crystallization were investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and the vibrating sample magnetometer (VSM). The precipitation and Nd-rich and Fe-rich phases have no significant effect on the intrinsic coercitity for Nd60Fe20Al8Co10B2 alloy annealed below 723 K. However, the growth of Fe-rich phase decreases the saturate magnetization and remanence of the alloy. The hard magnetic behavior is disappeared when the alloy is fullycrystallized.  相似文献   

15.
The Tb40(Fe49Co49V2)60 films were fabricated by magnetron cosputtering from a multiple target arrangement at different argon pressures.The samples were investigated using X-ray diffraction,magnetic force microscope and vibrating sample magnetometer.A strong perpendicular anisotropy was obtained for the sample prepared at 0.4 Pa.The easy direction of magnetization could be turned from perpendicular to in-plane direction either at high working pressures(P Ar >2.0 Pa) or by annealing at temperatures higher than 250 °C.An excellent magnetic softness with coercivity below 3 mT and saturating field of 20 mT in film-plane direction was obtained for the sample prepared at 0.7 Pa and then annealed at 350 °C.  相似文献   

16.
The ribbons of NdFeB/α-Fe composite alloy were prepared by melt spinning and post crystallizing technique.The element distri-butions and phase component of both surfaces of as-spun ribbons were measured by energy dispersive spectrometry (EDS) and X-ray diffrac-tion (XRD).Because of the centrifugation,a segregation of B,Fe,and Nd concentrations was observed at the cross section.After crystallizing annealing,the element concentration segregation still existed in the as-crystallized ribbons.Due to the segregation of B,Fe,and Nd,the B-rich phase was observed near the wheel side surface.The B-rich phase may deteriorate the magnetic property of NdFeB/α-Fe composite alloy.  相似文献   

17.
The effects of Tb addition on the microstructure and magnetic properties of the NdFeB magnets prepared by HD method were investigated by X-ray diffraction(XRD) and BH magnetometers.The results of the microstructure showed that both the Tb-doped and undoped permanent magnets were composed mostly of Tetragonal phase Nd2Fe14B(space group P42/mnm) and a trace amount of Nd-rich phase.Accordingly,addition of Tb led to a decrease of the pole density factor of(004),(006) and(008) crystal plane of the Nd2Fe14B phase calculated by Horta formula,but the coercivity of the magnets increased from 2038 kA/m up to 2302 kA/m as a consequence of Tb addition.The study of the Hc(T)/Ms(T) versus/Ms(T) behavior showed that the nucleation was the dominating mechanism for the magnetization reversal in both sintered magnets,and the microstructural parameters of αk and Neff were obtained also.The Kronmüller-plot showed an increase of the αk responsible for an increase of the coercivity.  相似文献   

18.
The effects of wheel speeds on the magnetic properties and microstructures of [(Nd,Pr)1-xCex]-Fe-B meltspun ribbons were investigated.Compared to melt-spun ribbons with low cerium(Ce) content(x=0.2),amorphous formation can be suppressed at high wheel speed in the ribbons with a relatively high Ce content(x=0.8),and with the increase of the wheel speed,the magnetic properties of the ribbons with high Ce content raise continuously.At high wheel speed,the coercivity mechanism ...  相似文献   

19.
Compounds with the composition SmFex(x=3–8) were prepared by melt spun method at a velocity of 40 m/s and subsequent annealing at temperature between 600–1000 ℃. The crystal structures of the as-quenched and as annealed powders were investigated by XRD methods with following Rietveld analysis. The glass forming ability could be enhanced by the increase of Sm content to x≤5.Metastable Sm5Fe17-type structure existed when 3≤x≤5 and temperature was lower than 800 ℃. SmFe2-type structure could be stable up to 1000 ℃ when x〉3 and temperature was under 800 ℃. The content of SmFe2-type decreased with the increase of x value and increased with temperature lower than 800 ℃, from which SmFe2-type started to bring the transition to SmFe3-type. As for Sm5Fe17-type compounds with x=3.4, the highest coercivity of 33.6 kOe could be obtained under a velocity of 30 m/s and heat treated under 700 ℃×1h.  相似文献   

20.
The compound Sm0.98Fe9.02–xGaxNδ(x=0, 0.25, 0.5, 0.75, 1) were prepared by melt-spun method and subsequent annealing and nitriding. The Rietveld analysis showed that the lattice expansion played an important role in improving the Curie temperature. An obvious development of the Curie temperature was obtained with the increased Ga content from x=0–1(ΔTc=90 oC). The optimum coercivity of nitrides was obtained at x=0.25 with the value Hcj=652 kA/m(8.15 kOe) after annealing, which corresponded to a reasonable distribution of grain sizes of both TbCu7-type SmFe9Nδ and α-Fe. However, an excess of Ga doping might lead to an abnormal growth of α-Fe, which in turn deteriorated the magnetic properties. It was concluded that a moderate Ga content was very effective in raising the coercivity and Curie temperament in the TbCu7-type Sm-Fe-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号