首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
Lu Sun  Lei Zhu  Benjamin S. Hsiao 《Polymer》2004,45(24):8181-8193
The self-assembly and crystallization behavior of a well-defined low molecular weight polyethylene-block-poly(ethylene oxide) (PE-b-PEO) diblock copolymer was studied. The number-average degrees of polymerization for the PE and PEO blocks were 29 and 20, respectively. The molecular weight distribution was 1.04 as determined by size-exclusion chromatography. The PE-b-PEO sample exhibited two melting points at 28.7 and 97.4 °C for the PEO and the PE crystals, respectively. The crystallization of the PE blocks was unconfined, while the crystallization of the PEO blocks was confined between pre-existing PE crystalline lamellae, as demonstrated by simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) studies. In the fully crystalline state, both PE and PEO blocks formed extended-chain crystals with PE chains tilted ∼22° from the lamellar normal and PEO chains parallel to the lamellar normal, as evidenced by two-dimensional WAXD study of shear-oriented samples. Regardless of hydrogen bonding among hydroxyl chain ends in the PEO blocks, interdigitated, single-crystalline layer morphology was observed for both PE and PEO crystals. The partial crystalline morphology, where the PE crystallizes and the PEO is amorphous, had the same overall d-spacing as the fully crystalline morphology. A double-amorphous PEO layer sandwiched between neighboring PE crystalline layers was deduced based on a chain conformation study using Fourier transform infrared. The confined crystallization kinetics for PEO blocks was investigated by differential scanning calorimetry, which could be explained by a heterogeneous nucleation mechanism. The slower crystallization rate in the PEO-block than the same molecular weight homopolymer was attributed to the effects of nanoconfinement and PEO chains tethered to the PE crystals.  相似文献   

2.
Mohammad Tariqul Islam 《Polymer》2011,52(22):5212-5220
A systematical study on the morphological transition of the micelle films of semi-fluorinated poly(ethylene oxide)-b-poly(1H,1H-dihydro perfluorooctyl methacrylate) (PEO-b-PFOMA) diblock copolymers was carried out upon perfluroalkanes (PF-5080) or α,α,α-trifluorotoluene (TFT) solvent annealing. Poorly ordered short cylindrical structures of the PEO5k-b-PFOMA21k micelle film underwent a phase inversion with PEO cores in the PFOMA continuous phase with a short period of PF-5080 solvent annealing. In contrast, the highly ordered morphology of PEO10k-b-PFOMA21k with PFOMA cores in the PEO continuous phase developed into cylindrical microdomains presumably via the fusion process. Prolonged annealing of the film transformed its morphology into inverted-spherical domains of PEO in the PFOMA continuous phase through long-range ordering by following the fission process. In order to find out a synthetic application of the morphology inversion strategy, an attempt was undertaken by adding a gold precursor to the PEO10k-b-PFOMA21k micelle solution, and as-cast thin films were prepared accordingly. Upon PF-5080 solvent annealing, the nanoparticles populated in self-assembled thin films resulted in inverted-spherical domains having gold nanoparticles populated in PEO cores surrounded by the PFOMA continuous phase. When the annealing solvent was changed to TFT, a highly ordered in-plane cylindrical morphology with respect to the substrate was achieved from the poorly ordered cylindrical microdomains of the PEO5k-b-PFOMA21k thin film, whereas an uneven cylindrical structure was produced from PEO10k-b-PFOMA21k.  相似文献   

3.
A polybutadiene19-block-poly(ethylene oxide)94 (PB-PEO) has been modified by free-radical additions of 2-ethylhexanethiol, 1-decanethiol, and 1-dodecanethiol separately to the PB block. The block copolymers were characterized by DSC, SAXS, XRD and AFM measurements. Above the melting temperature of PEO, PB-PEO showed hexagonal morphology having PB cylinders in the PEO matrix. The addition of alkyl side chains decreased the volume fraction of PEO and the morphology changed to lamellar for ethylhexyl side chains and to reversed hexagonal morphology with PEO cylinders in the PB/alkyl chain matrix for decyl and dodecyl side chains. Below the melting temperature of PEO, all polymers showed lamellar morphology. In the case of dodecyl side chains, the lamellar morphology oriented perpendicular to the air/film interface and was stable against high temperature annealing.  相似文献   

4.
Lei Gao 《Polymer》2011,52(17):3681-3686
Hairy polymer nanoobjects (PNOs) of different shapes can be easily obtained by cross-linking the discontinuous microphases of bulk block copolymers followed by dispersing in a solvent. Herein we report a general approach to functionalize the shaped PNOs by bulk microphase separation of poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene (PTEPM-b-PS) copolymers in the presence of functional silane coupling agents. The silanes like (3-mercaptopropyl)trimethoxysilane and (3-chloropropyl)trimethoxysilane were enriched into the PTEPM discontinuous microdomains selectively. The microphase structures were characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) of microtomed slices. For the PTEPM78-b-PS348 which had a lamellar structure, its blending mixtures with MMS and CMS whose content reached up to 50 wt% still remained as a lamellar structure. When small amount of MMS or CMS was added, the PTEPM71-b-PS780 as hexagonally packed cylinders remained its structure. However, the morphology changed into lamellae at higher content of the silanes. For PTEPM46-b-PS1669, its spherical structure remained but the size distribution became broad gradually with increase of silanes. By inducing gelation and then dispersing in a good solvent of PS phases, hairy PNOs having lamellar, cylindrical or spherical shape with their cores being functionalized with the groups from co-gelated silanes were obtained.  相似文献   

5.
The biocompatible tadpole-shaped copolymers [cyclic-poly(ethylene oxide) (PEO)]-b-[linear poly(?-caprolactone) (PCL)]2 [(c-PEO)-b-PCL2] with one PEO ring and two PCL tails were synthesized by combination of glaser coupling with ring-opening polymerization (ROP). First, a linear PEO precursor with two alkyne groups at the chain terminal and two hydroxyl groups at the chain middle was prepared by ROP of EO monomer and the following transformation of functional groups. Then, cyclic PEO with two hydroxyl groups at the same site was obtained by the “Glaser” cyclization. Finally, the hydroxyl groups on cyclic PEO directly initiated the ROP of ?-CL monomer to produce the target copolymers (c-PEO)-b-PCL2. The target copolymers and intermediates were all well characterized by GPC, MALDI-TOF MS, 1H NMR and FT-IR.  相似文献   

6.
The phase behavior of a series of LiClO4-doped poly(ε-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) was studied as a function of PEO volume fraction (fPEO), doping ratio (r) and temperature (T). It is found that the morphology of the hybrids changes from disordered structure (DIS) to hexagonally packed cylindrical (HEX) structure and then to lamellar (LAM) structure as the volume fraction of the PEO/salt phase (fPEO/salt) increases at fPEO/salt < 0.5. Order–order transitions are observed upon heating some hybrids. An approximate phase diagram of the PCL-b-PEO/LiClO4 hybrids with fPEO/salt < 0.5 was constructed in terms of fPEO/salt and the segregation strength (χeffN). As compared with the phase diagram of the weakly segregated diblock copolymers, the phase diagram of the hybrids has two features: the boundaries of the LAM and HEX structures shifts to lower fPEO/salt and body-centered cubic spherical (BCC) structure is not observed for the samples studied. This can be attributed to the weaker ability of the salt inducing microphase separation at low fPEO and the conformational change of the PEO block induced by the salt. Some unexpected phase behaviors were observed for the hybrids with fPEO/salt > 0.5, including the hexagonally perforated layers (HPL) to LAM transition upon heating the same hybrid and HEX to gyroid (GYR) transition with the increase of doping ratio at the same temperature. These unexpected phase behaviors are qualitatively interpreted based on the competitive association of the PCL block with Li+ ions at elevated temperatures and higher doping ratios, which leads to re-distribution of the Li+ ions in different phases and the inconsistency between the calculated fPEO/salt and the real volume fraction of the PEO/salt phase.  相似文献   

7.
An effective method for fabrication of long range ordered micro- and nanostructures on surfaces is to control the interactive crystallisation of block copolymers. In this study, the influence of different initial mesophases of a double crystalline polyethylene-block-poly (ethylene oxide) (PE-b-PEO) diblock co-oligomer on the interactive crystallisation process was studied using synchrotron radiation X-ray diffraction (SAXS/WAXD), in situ optical microscopy and differential scanning calorimetric analysis (DSC). According to the applied annealing procedure, different PE-b-PEO initial mesophases, i.e., disordered, cylindrical and spherical, have been induced. In all cases, the subsequent PEO crystallisation disrupted these initial microdomains and transformed them into crystalline lamellar morphologies with the same long periods. However, the different initial mesophases significantly affected the PEO crystallisation kinetics due to different topological confinements. An initial disordered mesophase induced the highest PEO crystallisation rate because PEO nucleation and crystal growth were limited only by chain diffusion. For an initial spherical or cylindrical mesophase, decreased PEO crystallisation rates were observed. Here, the chain diffusion was decreased by the microdomain structure. For an initial cylindrical mesophase, the earlier formed PE crystals act as a template for the subsequent PEO crystallisation and, thus, increased the PEO crystallisation as compared to the spherical mesophase where the PE was amorphous. This study demonstrates that the topological confinement of the block copolymer's initial mesophase strongly influences the crystallisation kinetics and, thus, the structures formed at the surface of drop-casted films.  相似文献   

8.
The morphology of a melt-quenched crystalline-crystalline diblock copolymer, poly(ε-caprolactone)-block-polyethylene (PCL-b-PE), was studied by small-angle X-ray scattering and transmission electron microscopy. The melting behavior of PCL-b-PE was also investigated by differential scanning calorimetry. The melting temperature of PCL blocks, Tm,PCL, was ca. 55 °C and that of PE blocks was ca. 96 °C. Therefore, the PE block always crystallized first during quenching from the microphase-separated melt into various temperatures Tc below Tm,PCL to yield an alternating structure composed of PE lamellae and amorphous layers (PE lamellar morphology), and subsequently the crystallization of PCL blocks started at Tc after some induction period. The PE lamellar morphology was preserved after the crystallization of PCL blocks at low crystallization temperatures (Tc<30 °C), that is, the PCL block crystallized within the PE lamellar morphology. At high crystallization temperatures (45 °C>Tc>30 °C), on the other hand, the crystallization of PCL blocks destroyed the PE lamellar morphology to result in a new lamellar morphology mainly consisting of PCL lamellae and amorphous layers (PCL lamellar morphology). The PE crystals were fragmentarily dispersed in the PCL lamellar morphology.  相似文献   

9.
Li-Ting Lee  Sheng Shu Hou 《Polymer》2006,47(25):8350-8359
Phase behavior and miscibility with positive deviation from linear Tg-composition relationship in a copolymer/homopolymer blend system, poly(2-vinyl pyridine)-block-poly(ethylene oxide) (P2VP-b-PEO)/poly(p-vinyl phenol) (PVPh), were investigated by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and solid-state 13C nuclear magnetic resonance (13C NMR), optical microscopy (OM), and scanning electron microscopy (SEM). Optical and electron microscopy results as well as NMR proton spin-lattice relaxation times in laboratory frame () all confirmed the miscibility as judged by the Tg criterion using DSC. In comparison to the literature result on a homopolymer/homopolymer blend of P2VP/PVPh, fitting with the Kwei equation on the Tg-composition relationship for the block-copolymer/homopolymer blend of P2VP-b-PEO/PVPh blend system yielded a smaller q value (q = 120) for P2VP-b-PEO/PVPh than that for P2VP/PVPh blend (q = 160). The FT-IR and 13C NMR results revealed hydrogen-bonding interactions between the pendant pyridine group of P2VP-b-PEO and phenol unit in PVPh, which is responsible for the noted positive deviation of the Tg-composition relationship. Comparison of the shifts of hydroxyl IR absorbance band, reflecting the average strength of H-bonding, indicates a decreasing order of P2VP/PVPh > P2VP-b-PEO/PVPh > PEO/PVPh blends. The PEO block in the copolymer segment tends to defray the interaction strength in the P2VP-b-PEO/PVPh blends because of relative weaker interaction between PEO and PVPh than that between P2VP and PVPh pairs. A comparative ternary (P2VP/PEO)/PVPh blend was also studied as the controlling experiments for comparison to the P2VP-b-PEO/PVPh blend. The thermal behavior and interaction strength in (P2VP/PEO)/PVPh ternary blends are discussed with those in the P2VP-b-PEO/PVPh copolymer/homopolymer blend.  相似文献   

10.
Poly(ethylene oxide)-b-poly(butadiene-co-acrylonitrile)-b-poly(ethylene oxide) (PEO-b-PBN-b–PEO) triblock copolymers with three different compositions were synthesized from poly(ethylene glycol) methyl ethers and carboxylic acid-terminated poly(butadiene-co-acrylonitrile) (CTBN) by ester coupling reaction at room temperature. The PEO-b-PBN-b-PEO was incorporated into anhydride cured epoxy thermosets to improve the fracture toughness by the formation of either nano-sized spherical micelles or micron-sized vesicles. The polymer chemical structure was confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and gel permeation chromatography. The morphology of PEO-b-PBN-b–PEO within the epoxy thermosets was investigated using a transmission electron microscope, an atomic force microscope, and a scanning electron microscope. Also, we conducted impact testing and plane-strain fracture toughness testing to evaluate the fracture toughness in terms of the impact strength and the critical stress intensity factors (KIC) for the modified epoxy thermosets. The results revealed that all the PEO-b-PBN-b-PEO triblock copolymers are more effective in the toughening of epoxy thermoset compare to CTBN. We found that the 5 wt% PEO-b-PBN-b-PEO modified epoxy thermoset containing micron-sized vesicles exhibited the highest KIC, which was 3.23 times as high as the KIC of pristine epoxy thermoset. Besides, the glass transition temperature remained and the tensile modulus did not reduce remarkably when the amount of PEO-b-PBN-b-PEO added into epoxy was 5 wt%.  相似文献   

11.
We show that the phase behavior of the strongly segregated blend consisting of a crystalline-amorphous diblock copolymer (C-b-A) and an amorphous homopolymer (h-A), which depends on the degree of wetting of A blocks by h-A, can be probed by the crystallization kinetics of the C block. A lamellae-forming poly(ethylene oxide)-block-polybutadiene (PEO-b-PB) was blended with PB homopolymers (h-PB) of different molecular weights to yield the blends exhibiting ‘wet brush’, ‘partially dry brush’, and ‘dry brush’ phase behavior in the melt state. The crystallization rate of the PEO blocks upon subsequent cooling, as manifested by the freezing (crystallization) temperature (Tf), was highly sensitive to the morphology and spatial connectivity of the microdomains governed by the degree of wetting of PB blocks. As the weight fraction of h-PB reached 0.48, for instance, Tf experienced an abrupt rise as the system entered from the wet-brush to the dry-brush regime, because the crystallization in the PEO cylindrical domains in the former required very large undercooling due to a homogeneous nucleation-controlled mechanism while the process could occur at the normal undercooling in the latter since PEO domains retained lamellar identity with extended spatial connectivity. Our results demonstrate that as long as the C block is present as the minor constituent the melt phase behavior of C-b-A/h-A blends can also be probed using a simple cooling experiment operated under differential scanning calorimetry (DSC).  相似文献   

12.
Xue Li  Hui Yang  Limei Xu  Dong Ha Kim 《Polymer》2008,49(5):1376-1384
The effects of additives of poly(methyl methacrylate) (PMMA) and HAuCl4 on the morphologies of hybrid titania films formed via co-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers, titania sol-gel precursor in a selective solvent were investigated. The results show that addition of PMMA or HAuCl4 has an important influence on the morphologies of hybrid titania films. Addition of PMMA or HAuCl4 can induce the morphology transition of the PS-b-PEO/titania sol-gel mixture from spherical micelles to vesicles. Therefore, the morphologies of the hybrid films formed on silicon substrate surfaces by spin-coating can be controlled by the addition of homopolymer (PMMA) or inorganic precursor (HAuCl4) into the PS-b-PEO/titania sol-gel mixtures, allowing access to nanoparticles or nanoporous films. After removing the polymer matrix, nanoparticle aggregates or nanobowl-like structures are left behind on the substrate surfaces.  相似文献   

13.
The nanoscale architectures evident in the thin films of self-assembling hybrid block copolymers—which are tailored to inherit the advantageous properties of their constituent synthetic (homo)polymer and polypeptide blocks—have continued to inspire a variety of new applications in different fields, including biomedicine. The thin films of symmetric hybrid block copolymer, α-methoxy-poly(ethylene glycol)-block-poly[ε-(benzyloxycarbonyl)-l-lysine], MPEG112-b-PLL(Z)17, were prepared by solvent casting in five different solvents and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy, Thermogravimetric analysis, Derivative Thermogravimetric analysis, Differential Scanning Calorimetry, Contact Angle goniometry, Wide-Angle X-ray Diffraction, and Scanning Electron Microscopy. Film thickness was estimated to be 51 ± 23 μm by the “step-height” method, using a thickness gauge. Although no significant change to the block copolymer’s microstructure was observed, its solvent-cast films displayed divergent physical and thermal properties. The resulting cast films proved more thermally stable than the bulk but indicated greater block miscibility. Additionally, the thin films of MPEG112-b-PLL(Z)17 preserved the microphase separation exhibited by the bulk copolymer albeit with appreciable loss of crystallinity. The surface properties of the polymer–air interface were diverse as were the effects of the casting solvents. Oriented equilibrium morphologies are also evident in some of the as-cast thin films.  相似文献   

14.
We have investigated the crystallized morphology formed at each temperature Tc (20 °C ≤ Tc ≤ 45 °C) in double crystalline poly(?-caprolactone)-block-polyethylene (PCL-b-PE) copolymers as a function of composition (or volume fraction of PE blocks ?PE) by employing small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) techniques. When PCL-b-PE with ?PE ≤ 0.58 was quenched from a microphase-separated melt into Tc, the crystallization of PE blocks occurred first to yield an alternating structure consisting of thin PE crystals and amorphous PE + PCL layers (PE lamellar morphology) followed by the crystallization of PCL blocks, where we can expect a competition between the stability of the PE lamellar morphology (depending on ?PE) and PCL crystallization (on Tc). Two different morphologies were formed in the system judging from a long period. That is, the PCL block crystallized within the existing PE lamellar morphology at lower Tc (<30 °C) to yield a double crystallized alternating structure while it crystallized by deforming or partially destroying the PE lamellar morphology at higher Tc (>35 °C) to result in a significant increase of the long period. However, the temperature at which the morphology changed was almost independent of ?PE. For PCL-b-PE with ?PE ≥ 0.73, on the other hand, the morphology after the crystallization of PE blocks was preserved at every Tc investigated.  相似文献   

15.
Morphologies and structures determined by crystallization of the blocks, microphase separation of the copolymers, and vitrification of PLLA block in poly(l-lactide-b-ethylene oxide) (PLLA-b-PEO) copolymers were investigated using microscopic techniques and synchrotron small angle X-ray scattering. The PLLA-b-PEO copolymer films were crystallized from two different annealing processes: melt crystallization (process A) or crystallized from glass state of PLLA block after quenching from melt state (process B). The relationship between the crystalline morphology and microstructure of the copolymers were explored using SAXS. The morphology and phase structure are predominated by crystallization of PLLA block, and greatly influenced by microphase separation of the copolymers. In process B, lozenge-shape and truncated lozenge-shaped PLLA crystals of nanometer scale can be observed. The crystalline morphology is markedly affected by the microstructure formed during the annealing process. Star-shaped morphologies stacked with PLLA single crystals were observed.  相似文献   

16.
A self-condensing monomer 4-(4′-bromophenyl)-4″-n-butyldiphenylamine (1) was synthesized, and successfully converted to poly(4-n-butyltriphenylamine) (PBTPA) by arylamination using palladium catalyst. PBTPAs can be functionalized at both terminals separately by adding an aryl bromide or arylamine derivatives as a terminator, which enabled us to prepare the diblock copolymer PBTPA-block-PEO. Polymer characterization was performed by 1H NMR, 13C NMR, and DSC, which confirmed that the PEO segment was successfully introduced at the terminal of PBTPA. The surface morphology in a thin film of PBTPA-block-PEO was examined by AFM, revealing that a microphase-separated structure or cup-shaped structure with PEO sphere domains formed when the film was spin-cast from 1,1,2,2-tetrachloroethane solutions of different concentrations.  相似文献   

17.
The time development of the surface morphology of asymmetric polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) thin films ‘annealing’ in methanol vapor, a selective solvent for minority P4VP block, was investigated by atomic force microscopy(AFM). For PS-b-P4VP with cylindrical structure in bulk, as annealing time progressed, the surface morphology underwent structural transitions from featureless topography to hybrid morphology of cylindrical and spherical pits, to cylinders, to nanoscale depressions, back to cylinders again. The different film thickness made the number of the transitions observed, at any given annealing time, different. The thicker the film is the more transitions at a given annealing time can be observed. If the film was not thick enough, depressions appeared. For PS-b-P4VP with spherical structure in bulk, it displayed nanoscale depressions with the annealing time increasing. A possible mechanism of the transition of morphologies during solvent annealing was proposed.  相似文献   

18.
Cheng-Wei Tu  Feng-Chih Chang 《Polymer》2009,50(13):2958-1130
A well-defined poly(ethylene oxide-block-N-isopropylacrylamide) (PEO-b-PNIPAM) diblock copolymer was synthesized by atom transfer radical polymerization and formed the inclusion complexes (ICs) after selective threading of the PEO segment of the block copolymer through the cavities of α-cyclodextrin (α-CD) units. The formation of the α-CD/PEO ICs between α-CD and PEO segment of the PEO-b-PNIPAM transformed the system from its original random coil conformation into a rod/coil-like structure. The stacking of the α-CD/PEO ICs and phase separation within the α-CD/PEO-b-PNIPAM IC resulted in the self-assembly of long-range-ordered lamellar structure exhibiting alternating layers of (i) α-CD/PEO ICs with hexagonally packed plates and (ii) amorphous phase of unincluded PEO/PNIPAM with brush conformation.  相似文献   

19.
We report on the self-assembly, in water and in bulk, of amphiphilic liquid crystal block copolymers consisting of a cholesterol-based smectic LC polymer block (PAChol) and poly(ethylene glycol) (PEG) block. Two series of block copolymers, PEG45-b-PAChol and PEG114-b-PAChol (45 and 114 are the degree of polymerization of PEG blocks) with different hydrophilic/hydrophobic weight ratios were synthesized and characterized in detail. Depending on the diblock composition, smectic polymer vesicles and/or nanofibers were formed by adding water into a dilute solution of copolymers in dioxane. If THF is used instead of dioxane as solvent, solid spherical aggregates were obtained upon water addition for PEG45-b-PAChol series, while macroscopic precipitation occurred for PEG114-b-PAChol series. The mesomorphic and microphase segregation structures of the block copolymers in bulk were studied by X-ray scattering, DSC and POM. The interdigital smectic A (SmAd) phase with a lamellar period of 4.25 nm was detected in all block copolymers. For PEG114-b-PAChol5 (PEG/PAChol weight ratio = 66/34) and PEG114-b-PAChol12 (45/55), lamellar type of microphase segregation was observed.  相似文献   

20.
Phase morphological effect on crystallization kinetics in various nanoconfined spaces in a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer with a PEO volume fraction of 37 vol% was investigated. The phase morphology was characterized by small-angle X-ray scattering and transmission electron microscopy techniques. When the sample was cast from chloroform solution and annealed at 150 °C, a double gyroid (DG) phase was obtained. After it was subjected to a large-amplitude reciprocating shear, the sample transformed to an oriented hexagonal cylinder (Hex) phase. To obtain a lamellar confined geometry, lamellar single crystals were grown from dilute solutions. The crystallization in the lamellar (Lam) phase was one-dimensionally (1D) confined, while it was two-dimensionally (2D) confined in the DG and Hex phases, although they had different structures. Differential scanning calorimetry (DSC) was employed to study the crystallization kinetics using the Avrami analysis for these three nanoconfined geometries. Heterogeneous nucleation was found in all three samples in the crystallization temperature (Tc) regions studied. DSC results indicated that the crystallization kinetics in the Lam phase was the fastest, and the PEO crystals possessed higher thermodynamic stability than in the DG and Hex phases. For the crystallization kinetics in two 2D-confined phases, at low Tc (<35 °C) the PEO crystallization rates in the DG and Hex phases were similar, while at high Tc (>35 °C) the PEO crystallization was slower in the DG phase than in the Hex phase. The Avrami exponent n-values for the DG and the Hex samples were similar (∼1.8), yet the values of lnK in the DG phase were smaller than those in the Hex phase. This suggested that the linear growth rate was slower in the DG phase than in the Hex phase due to continuous curved channels in the DG phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号