首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floodplain habitats provide critical spawning and rearing habitats for many large‐river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The rehabilitation of lowland rivers subjected to channelization and artificial levee construction should attempt to improve habitat heterogeneity and diversity of floodplain hydrological connectivity. However, rehabilitation efforts rarely consider the importance of variable lateral hydrological connectivity between floodplain waterbodies and main river channels (ranging from those permanently connected to those temporarily connected during river level rises), instead focusing on increasing individual floodplain waterbody connectivity. This study investigated the young‐of‐the‐year (YoY) fish communities in 10 artificial floodplain waterbodies of variable hydrological connectivity with the river Trent, England, between May and November 2006, inclusive. Floodplain waterbody connectivity to the main river was positively correlated with the number of species captured (alpha diversity), Shannon–Wiener diversity, Margalef's species richness index and the relative abundance of rheophilic species and negatively correlated with species turnover (beta diversity). YoY fish communities in poorly connected water bodies were most dissimilar to riverine communities. The results demonstrate the importance of variable lateral connectivity between artificial floodplain waterbodies and main river channels when rehabilitating lowland river fish communities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Loss of habitat complexity through river channelization can have adverse affects on riverine fauna and flora through reductions in abundance and diversity of species. Habitat enhancement schemes are used to improve the physical and biological heterogeneity of riverine habitats. Between 1996 and 1997 the Environment Agency undertook a habitat enhancement scheme on the Huntspill River, Somerset, England to improve conditions for coarse (non‐salmonid) fishes. The scheme involved reducing bank gradients and the construction of off‐channel bays in parts of the channel, all of which were planted with willow (Salix sp.) and common reed (Phragmites australis). The effectiveness of the enhancement scheme was investigated by comparing 0‐group fish assemblages in manipulated and unmanipulated sites. Abundance and diversity of 0‐group fishes was significantly higher in manipulated habitats. There was no significant difference detected in the effects of the different types of enhancement measure used. The significance of microhabitats produced by habitat enhancement schemes is discussed with respect to spawning, nursery and refuge sites for 0‐group coarse fish assemblages. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

5.
In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity between them. In this study we investigate how river regulation has affected fish community structure in floodplain waterbodies of the rivers Rhône (France), Danube (Austria), Rhine and Meuse (The Netherlands). A typology of natural and man‐made aquatic habitats was constructed based on geomorphology, inundation frequency and ecological connectivity, along the transversal river–floodplain gradient, i.e. perpendicular to the main stream of the river. Fish species were classified in ecological guilds based on their flow preference, reproduction ecology and diet, and their status on national red lists was used to analyse the present state of the guilds and habitats. Ecological fish guilds appear to be good indicators of ecological integrity and functioning of river–floodplain systems. A transversal successional gradient in fish community structure that bears some resemblance to the gradient found in natural rivers can still be discerned in heavily regulated rivers. It resembles the longitudinal river gradient; even some predictions of the River Continuum Concept are applicable. Overall, richness and diversity of species and ecological guilds decrease with decreasing hydrological connectivity of floodplain waterbodies. Anthropogenic disturbances have affected fish species unevenly: guilds of specialized species that are highly adapted to specifically riverine conditions have declined far more than generalist species. Fish habitats in the main and secondary channels have suffered most from regulation and contain the highest percentage of threatened species. Rheophilic fishes have become rare because their lotic reproductive habitats are severely degraded, fragmented, absent or unreachable. Limnophilic fishes have become rare too, mainly as a result of eutrophication. Eurytopic fishes have become dominant everywhere. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Despite the increasing use of fatty acids (FAs) as biomarkers in aquatic food web analysis, little information is available regarding differences in FA profiles of fish among habitat types in river–floodplain ecosystems. The objectives of this study were to (i) test whether the FA profiles of channel catfish (Ictalurus punctatus) differed among three reaches of the lower Kaskaskia River and its floodplain lakes, and (ii) to compare FA profiles among muscle, liver, and adipose fin tissues collected from these fish. Profiles differed significantly among sites, especially between upper and lower river sites, and between river channel and oxbow lake sites, suggesting differences in FA availability for channel catfish occupying different habitats and river reaches in the Kaskaskia River system. Specifically, the essential FAs 18:2n‐6 and 18:3n‐3 increased in catfish tissues from upstream to downstream reaches, which could reflect increased floodplain connectivity and decreasing impoundment effects downstream. Ratios of n‐3 to n‐6 FAs were higher in fish from oxbow lakes, perhaps suggesting increased use of autochthonous production in the floodplain relative to the main river channel. Muscle and adipose fin FA profiles exhibited similar location‐related trends, whereas liver FA profiles were markedly different from the other tissue types. These results suggest that adipose fin tissue samples may be a viable, less‐invasive alternative to muscle tissue for analysis of FA profiles in channel catfish. Our study supports the use of tissue FA profiles in identifying habitat utilization by channel catfish, and perhaps habitat‐specific energy contributions to riverine consumers. Furthermore, our work highlights floodplain habitat as a potential source of essential n‐3 FA and the associated importance of maintaining river–floodplain connectivity to support aquatic food webs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Environmental flows aim to mimic components of a river's natural flow variability, including the magnitude, frequency, timing, duration, rate of change and the predictability of flow events. Aspects of the natural flow regime are thought to be linked to critical components of the life history strategies of many riverine fishes, including spawning and recruitment. In the Murray River, Australia, environmental flows are increasingly being used as a restoration tool; however, there is little information about the response of fish to these managed flow events. This study reports on the results from a 3‐year study on the effects of water management on the spawning and recruitment of four native fish species in the mid‐Murray River system. Two of these years were hydrologically similar, while the third year encompassed an extensive period of floodplain inundation, including the use of the largest environmental flow allocation to date in Australia. Drift nets were used to collect the drifting eggs and larvae of four iconic native species throughout their spawning season each year. Young‐of‐year were collected in the following autumn. Although golden perch and silver perch eggs were collected in all 3 years, both species increased their spawning activity during the major flood period compared to the previous two seasons. Murray cod and trout cod appeared not to increase their spawning activity in the flood year, but their recruitment may be increased when floodplain inundation occurs at times when their larvae and juveniles are present, most likely through the generation of abundant food resources. Whilst further study is required to confirm the role and mechanism of flooding in the spawning and recruitment of these species; this study provides important evidence of a link between the provision of an environmental flood and fish spawning and recruitment, and has significant implications for managing flows in regulated rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Adequate densities of zooplankton prey are critical for growth and survival of larvae of many fish species. Little information exists on the density of zooplankton in Great Lakes inshore areas during early spring, when larvae of important fishes rely on zooplankton. Reduced age-0 walleye recruitment and the absence of data on zooplankton availability for larval walleyes in northern Green Bay, Lake Michigan, led us to assess zooplankton densities during this critical spring period. We conducted biweekly vertical plankton tows in 2014–2016 near reefs and river plumes used by spawning walleyes for periods when larval walleyes were expected to be relying on zooplankton prey. Densities of zooplankton were well below literature values identified for good growth and survival of larval walleyes, averaging 1.5 individuals L−1 for all taxa and 0.12 individuals L−1 for large-bodied taxa across all sites and sampling dates. Various factors could contribute to the low density of zooplankton observed. We found low but significantly higher densities of cyclopoid copepods, nauplii, Bosmina, and total zooplankton at river mouth sites compared to open water sites. These results suggest that food availability for larval walleye in our study area was severely limiting which is consistent with the paucity of strong year classes observed since 2000. We suspect northern Green Bay has limited potential for producing strong year classes of walleyes under such conditions. Fishery managers working in unproductive waters should consider assessing the zooplankton community during critical periods to identify potential bottlenecks to reproductive success and larval fish survival.  相似文献   

9.
Many of the most important commercial and recreational species of the megadiverse Brazilian freshwater fishes migrate in rivers among essential habitats during all life stages. These movements, however, have been severely blocked by hundreds of hydroelectric dams and reservoirs and they will be even more obstructed due to hundreds of new developments. Fishways have been used in many countries to allow fish to pass around dams. Fishway construction is booming in Brazil, but poor understanding of migrations by Brazilian fishes has led legislators, scientists, and the public to several misconceptions about the rules of fishways in fisheries conservation. First, is a belief that fishways are only needed to facilitate upstream spawning migrations. Also, it has been suggested that upstream passage for Neotropical migrant fishes is not useful if there is no large free‐flowing stretch upstream of a dam that contains spawning habitat and has a large natural floodplain (nursery habitat). In this paper, we discuss that, in addition to providing passage for pre‐spawning migrants, upstream fishways also provide passage for other fish migrations (e.g. foraging), and that all up‐ and downstream migrations during life history need to be addressed at dams to conserve fish resources. We also argue that an upstream fishway is important even if the upstream reach does not have spawning or nursery habitats. In addition, we discuss the need for protection of downstream migrant fish, and the importance of fish behaviourists and engineers working together on fishway design and operation to solve fish passage issues. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Navigation‐induced physical forces have been suggested to modify the structure of riverine fish assemblages by impeding especially the recruitment of littoral bound species. To investigate the effect of vessel frequency on fish, we compared the composition and seasonal succession of young‐of‐the‐year (YOY) fish assemblages in three similarly degraded river reaches differing in average vessel passages (2, 6 and 41 per day). Fish were caught by electrofishing biweekly between May and September. Multivariate tests were used to analyse differences between YOY‐fish assemblages and hurdle regression models applied to determine abiotic factors predicting fish occurrence and abundance. Roach (Rutilus rutilus) and perch (Perca fluviatilis) densities were compared. Roach larvae remain in the littoral zone while perch larvae shift to the pelagic zone immediately after hatch. YOY‐fish assemblage structure substantially changed along the traffic intensity gradient. In the high traffic intensity reach, species number and total fish density were markedly reduced compared to the other reaches. Roach densities were lowest in the high traffic intensity reach whereas perch densities did not decline along the gradient. Hurdle regressions confirmed a stronger effect of commercial navigation traffic intensity on roach than on perch. The total zooplankton biomass was highest in the high traffic intensity reach. Our results provide empirical evidence that intensive commercial navigation impoverishes fish assemblages in width‐restricted waterways. They underlined that in particular those species that have their first nursery habitats in shoreline areas were more affected by intensive commercial navigation than species whose larvae live predominantly pelagic. The results indicate that the negative effect of intensive navigation on riverine fish results primarily from the navigation‐induced hydraulic disturbances along the banks. Therefore, mitigation of navigation‐induced hydraulic forces is required to prevent degradation of fish communities in waterways. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Increasing multi‐sectoral demands on water resources have led to water abstraction and transfer activities, and the construction of dams and embankments that have significantly altered the flood regimes of rivers throughout the world resulting in the loss of fish production and biodiversity. The current emphasis on sustainable development and biodiversity conservation is leading efforts to mitigate these impacts by means of interventions such as the release of artificial floods downstream of dams and the manipulation of water levels within impounded floodplains. Whilst much work has been done to determine the hydrological requirements for the maintenance of salmonid populations, few equivalent studies are available from which to develop criteria for the management of hydrological regimes for fishes and fisheries in large floodplain–river systems such as the Mekong. The population dynamics of fish in such rivers are believed to respond to hydrological conditions in a density‐dependent manner. An age‐structured population dynamics model incorporating sub‐models describing density‐dependent growth, mortality and recruitment was used to explore how hydrological conditions within a theoretical floodplain–river system affect the dynamics of a common floodplain–river fish species. Graphical summaries of the response of exploitable biomass to a range of different drawdown rates, dry and flood season areas and volumes, and flood season durations are presented under five different model assumptions concerning density‐dependent processes. Optimal flooding patterns are also described for the model species and theoretical river system. The patterns of predictions that emerge from the simulations provide guidelines for managing or manipulating hydrological conditions in river systems for both fixed and variable volume hydrological scenarios. As a general rule of thumb, exploitable biomass is maximized by minimizing the rate of drawdown and maximizing the flood duration and flood and dry season areas or volumes. However, experiences from dam and other hydraulic engineering projects suggest that these predictions should be treated with caution until we better understand the influence of hydrology on spawning behaviour, system primary production, and critical habitat availability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Fish larvae require high densities of appropriately sized prey items for their survival and recruitment. It has been widely assumed that inundated floodplains are the major source of high densities of prey in floodplain rivers. This study examined the density and distribution of both pelagic and epibenthic meiofauna in a range of potential larval fish nursery habitats within the main channel of an Australian floodplain river. Although sufficient densities of meiofauna were found in the main channel environment to sustain fish larvae, the prey source was predominantly in the epibenthic zone, where the density of meiofauna was on average 100 times greater than in the pelagic zone. There was no apparent relationship between the density of meiofauna, both epibenthic and/or pelagic, and the preferred nursery habitats of fish larvae. This study suggests that an abundant prey resource for developing fish larvae may exist in main channel environments without inputs from the inundated floodplain. However, further studies are required to determine the relative contributions and importance of prey resources on inundated floodplains compared to the main channel environment for larval survival and cohort strength between successive years. Additionally, this study highlights the importance of sampling the epibenthos, and suggests that the significance of epibenthic meiofauna has been severely underestimated in many previous studies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Paraná River, Brazil. Our study confirmed reproduction of at least 8 long‐distance migrators, likely nine, out of a total of 19 occurring in the Upper Paraná River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Fish populations in the Brazos River, Texas, were surveyed monthly for 2 years to determine the relative influence of hydrology and habitat characteristics on the recruitment dynamics of seven species representing three divergent life history strategies. Surveys were conducted in two oxbow lakes with different flood recurrence intervals and the main river channel. The first year was relatively dry with few oxbow‐river connections, whereas year 2 was relatively wet and connections between the main channel and floodplain habitats were common. Oxbow lakes supported greater juvenile abundances of most species relative to the main channel and were particularly important for nest building species with parental care. The river channel supported small species with extended reproductive periods and large, long‐lived species that are able to store reproductive potential during sub‐optimal periods. Hydrologic isolation was associated with greater rotifer densities in oxbows, and species with the greatest fecundity produced strong year classes during this period. Hydrologic connectivity did not increase juvenile production for most species, suggesting that recruitment dynamics in the Brazos River are similar to predictions of the low flow recruitment hypothesis (LFR). These results suggest that both hydrology and habitat heterogeneity interact with fish life history strategy to determine optimal conditions for recruitment and all three factors must be considered in restoration strategies for floodplain rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Rapids habitats are critical spawning and nursery grounds for multiple Laurentian Great Lakes fishes of ecological importance such as lake sturgeon, walleye, and salmonids. However, river modifications have destroyed important rapids habitat in connecting channels by modifying flow profiles and removing large quantities of cobble and gravel that are preferred spawning substrates of several fish species. The conversion of rapids habitat to slow moving waters has altered fish assemblages and decreased the spawning success of lithophilic species. The St. Marys River is a Great Lakes connecting channel in which the majority of rapids habitat has been lost. However, rapids habitat was restored at the Little Rapids in 2016 to recover important spawning habitat in this river. During the restoration, flow and substrate were recovered to rapids habitat. We sampled the fish community (pre- and post-restoration), focusing on age-0 fishes in order to characterize the response of the fish assemblage to the restoration, particularly for species of importance (e.g. lake whitefish, walleye, Atlantic salmon). Following restoration, we observed a 40% increase in age-0 fish catch per unit effort, increased presence of rare species, and a shift in assemblage structure of age-0 fishes (higher relative abundance of Salmonidae, Cottidae, and Gasterosteidae). We also observed a “transition” period in 2017, in which the assemblage was markedly different from the pre- and post-restoration assemblages and was dominated by Catostomidae. Responses from target species were mixed, with increased Atlantic salmon abundance, first documented presence of walleye and no presence of lake sturgeon or Coregoninae.  相似文献   

17.
The connecting channels linking the Laurentian Great Lakes provide important migration routes, spawning grounds, and nursery habitat for fish, but their role as conduits between lakes for zooplankton is less understood. To address this knowledge gap in the St. Clair–Detroit River System (SCDRS), a comprehensive survey of crustacean zooplankton was performed in both riverine and lacustrine habitats from spring to fall 2014, providing the first system-wide assessment of zooplankton in the SCDRS. Zooplankton density and biomass were greatest in northern reaches of the system (southern Lake Huron and the St. Clair River) and decreased downstream towards Lake Erie. The composition of zooplankton also changed moving downstream, transitioning from a community dominated by calanoid copepods, to more cyclopoids and cladocerans in the Detroit River, and to cladocerans dominant in western Lake Erie. Coincidentally, species richness increased as sampling progressed downstream, and we estimated that our single-year sampling regime identified ~88% of potential taxa. Other species assemblages have responded positively to recent water quality and habitat restoration efforts in the SCDRS, and this survey of the zooplankton community provides benchmark information necessary to assess its response to continued recovery. In addition, information regarding the lower trophic levels of the system is integral to understanding recruitment of ecologically and economically valuable fish species targeted for recovery in the SCDRS.  相似文献   

18.
The introduction of weirs into stream ecosystems resulted in modifications of serial continuity and in the decline of riverine fish species. Successful river restoration requires information on the ecological functionality of fish bypass channels that are considered an ecological improvement according to the European Water Framework Directive. In this study, we compared the functionality of three nature‐oriented fish passes as compensatory habitats and migration corridors for fishes. Fish passes differed significantly from upstream and downstream reaches of the weirs, revealing higher current speed, lower water depth, smaller channel width and greater habitat variability. Following these structural differences, they provided key habitats for juvenile, small and rheophilic fishes that are typically underrepresented in highly modified water bodies. All fish passes were used as migration corridors, with increased fish movements during high discharge and at spawning periods. Because river stretches with high variability of current speed and water depth are scarce in highly modified water bodies, fish passes can play an important role as compensatory habitats and should thus be considered more intensively in habitat assessments and river restoration. Ideally, fish bypasses should mirror the natural discharge dynamics and consider all occurring fish species and sizes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Sufficient genetic diversity can aid populations to persist in dynamic and fragmented environments. Understanding which mechanisms regulate genetic diversity of riverine fish can therefore advance current conservation strategies. The aim of this study was to investigate how habitat fragmentation interacted with population genetic diversity and individual behaviour of freshwater fish in large river systems. We studied a population of the long‐distance migratory, iteroparous freshwater salmonid European grayling (Thymallus thymallus) in south‐eastern Norway. Genotyping (n = 527) and radio‐tracking (n = 54) of adult fish throughout a 169‐km river section revealed three major migration barriers limiting gene flow and depleting genetic diversity upstream. Individuals from upstream areas that had dispersed downstream of barriers showed different movement behaviour than local genotypes. No natal philopatry was found in a large unfragmented river section, in contrast to strong fidelity to spawning tributaries known for individuals overwintering in lakes. We conclude that (a) upstream sub‐populations in fragmented rivers show less genetic variation, making it less likely for them to adapt to environmental changes; (b) fish with distinct genotypes in the same habitat can differ in their behaviour; (c) spawning site selection (natal philopatry) can differ between fish of the same species living in different habitats. Together this implies that habitat loss and fragmentation may differently affect individual fish of the same species if they live in different types or sections of habitat. Studying behaviour and genetic diversity of fish can unravel their complex ecology and help minimize human impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号