首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Rice starch–water suspension (20%) were subjected to high hydrostatic pressure (HHP) treatment at 120, 240, 360, 480, and 600 MPa for 30 min. Polarizing light microscope, scanning electron microscopy (SEM), rapid visco analyzer (RVA), differential scanning calorimeter (DSC), and X-ray diffraction were used to investigate the physicochemical and structural changes of starch. Microscopy studies showed that the treatment of starch with HHP under 600 MPa for 30 min resulted in a complete loss of birefringence and a gel-like appearance. The treatment of starch suspension with HHP at 600 MPa resulted in a significant increase in swelling power and solubility at low temperature (50–60 °C), but opposite trends were found at high temperature (70–90 °C). The DSC analysis showed a decrease in gelatinization temperatures and gelatinization enthalpy with increase of pressure levels. RVA viscograms of starches exhibited an increase in peak, trough, and final viscosities, peak time, and pasting temperature but decrease of breakdown, setback viscosities, and pasting temperature when pressure was increased. X-ray diffraction studies showed that the HHP treatment converted rice starch that displayed the A-type X-ray patterns to the B-type-like pattern. These results showed that the treatment of rice starch in 20% starch/water suspension at a pressure of 600 MPa for 30 min led to a complete gelatinization of starch granules.  相似文献   

2.
Pressure-induced gelatinisation of sorghum starch was studied and compared to heat-induced gelatinisation. Starch suspensions were treated at increasing pressure (200–600 MPa) or temperature (60–95 °C) for 10 min. The degree of gelatinisation was determined using differential scanning calorimetry, changes in birefringence and damaged starch measurements. Furthermore, the pasting behaviour and structural changes during gelatinisation were investigated using rheology and microscopy. The pressure-induced as well as the temperature-induced gelatinisation curves were sigmoid-shaped. Gelatinisation occurred between 300 MPa and 600 MPa or between 62 °C and 72 °C. No significant differences were found between the rheological properties and the microstructure of the pressure-treated samples and the temperature-treated samples within the gelatinisation intervals. Granules lost their birefringence, but granular structure was maintained; however, when heated beyond the endpoint of gelatinisation, the formation of a “sponge-like” structure was observed. This change in structure at very high temperatures was reflected by a decrease in complex viscosity.

Industrial relevance

In order to apply high pressure as an alternative to temperature in the structural engineering of starch-based systems, a full understanding of the pressure-induced gelatinisation process is necessary. No rheological and ultra-structural differences were observed between pressure- and temperature-induced gelatinisation of sorghum starch. These results indicate that pressure treatment can be utilised as a replacement technology for temperature during processing of complex starch-containing products.  相似文献   

3.
Gelatinization of tapioca starch (25% dry basis) was induced by high hydrostatic pressure processing (HPP) at 600 MPa under different time and temperature regimes (30 °C for 10, 20 and 30 min; 50 °C for 10 min; 80 °C for 10 min). Textural, thermal and structural properties of the gels were studied and their stability was evaluated after 28 days of refrigerated (4 °C) and frozen (−18 °C) storage. Thermally induced gels (90 ± 1 °C, 20 min, gel-T) were used as controls. HPP resulted in the formation of harder gels than thermal processing (more significantly at lower processing temperatures) partially preserving the granular structure of the native starch. Longer HPP treatments caused only a slight decrease in hardness that was significant only at longer processing times (30 min). DSC thermograms of high pressure-induced samples showed a more asymmetrical ice-melting peak than that of thermally induced gels. Asymmetry of the peak of HP treated samples was more pronounced in samples processed at lower than at higher temperature. A different starch–water and/or starch/starch interaction may be hypothesized. During storage, all samples became stiffer and the amylopectin recrystallization increased, more extensively in thermally induced than in HPP samples where a stronger starch–starch and/or starch/water interactions may have hindered the recrystallization process.  相似文献   

4.
The effect of high pressure (HP) on wheat flour–water suspensions was investigated. Suspensions were treated for 10 min at 200–600 MPa. HP-treatment significantly increased the consistency of the flour suspensions, as studied by frequency sweep tests. Temperature sweeps revealed that HP-induced starch gelatinisation, with a sigmoidal-shaped correlation between degree of gelatinisation and treatment pressure. Analysis of protein solubility in different buffers indicated the HP-induced formation of urea-insoluble complexes and/or disulphide bonds. Furthermore, the effects of HP on the isolated components wheat starch and gluten were studied, and starch–gluten mixtures were used as a model system for flour. A negative effect of gluten on the consistency increase of starch suspension was observed. Comparing the rheological parameters of HP-treated wheat flour suspensions to those of starch suspensions, confirmed the weakening effect of gluten. However, the presence of gluten in flour could not fully explain the differences between starch and flour suspension.  相似文献   

5.
The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400 MPa; 600 MPa), pressure holding time (5 min; 10 min), and temperature (20 °C; 40 °C). Samples were pre-conditioned (final moisture level: 40 g/100 g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600 MPa. Corn starch and rice flour treated at 600 MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced.Industrial relevanceThis work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products.  相似文献   

6.
The degree of gelatinisation and electrical conductivity of wheat starch and tapioca starch suspensions (5% w/w) were determined after a pressure treatment of up to 530 MPa. With increasing pressure at a constant treatment time the degree of gelatinisation increased resulting in a gelatinisation curve similar to that of thermal gelatinisation. A pressure increase also caused an increase in electrical conductivity. A good linear relationship between the degree of gelatinisation and the electrical conductivity for both starches investigated was found. Since electrical conductivity correlates well with the degree of gelatinisation of starches after pressure treatment it is applicable for the quick and simple determination of pressure-induced starch gelatinisation.  相似文献   

7.
Influences of high speed jet (HSJ) at different pressures (0, 80, 160, 250 MPa) on digestibility and hydroxypropylation of rice starch were evaluated. HSJ treatment increased the content of rapidly digestible starch and slowly digestible starch and decreased the content of resistant starch with increasing of the treatment pressure in native starch. The degree and the reaction efficiency of hydroxypropylation of rice starch increased with an increase in treatment pressure. Scanning electron microscopy and X‐ray diffraction analysis showed that both the crystalline structure and the overall granular structure were partially destroyed. Meanwhile, HSJ treatment led to degradation of starch molecules. The results suggested that the changes of starch structure resulted in decreasing gelatinisation enthalpy of rice starch and might be response for the changes of reactivity and its digestibility to some extent.  相似文献   

8.
Clostridium sporogenes (ATCC 7955) spores inoculated in milk (2% fat) were subjected to high-pressure (HP) treatments (700–900 MPa) and at elevated temperatures (80–100 °C) for selected times up to 32 min. Samples were sealed in 1-mL plastic vials and placed in a specially constructed insulated chamber to prevent temperature drop during the treatment. Both pressure pulse (with no hold time) and pressure hold techniques were employed for treatment. Pressure pulse resulted in a small, but consistent, destruction (up to 0.5 log kill) of spores. During the pressure hold treatment, the destruction followed a first-order model (R 2 > 0.90). The kinetic data were compensated for the small variations in temperature during the treatment. As expected, higher pressures and higher temperatures resulted in a faster rate of spore destruction. Temperature-corrected D values ranged from 13.6 to 2.4 min at 700 MPa and 7.0 to 1.3 min at 900 MPa, respectively, with process temperatures set at 90 and 100 °C. In comparison, thermal treatments gave D values ranging from 156 min at 90 °C to 12.1 min at 100 °C. The temperature sensitivity Z P values (16.5 to 20.3 °C) under high pressure (700–900 MPa) were higher than under conventional thermal processing (9.0 °C), indicating the spore’s thermal resistance to increase at HP processing conditions. The pressure sensitivity Z T values varied between 450 and 680 MPa under the elevated temperature (80–100 °C) processing conditions. Overall, C. sporogenes 7955 spores were relatively more sensitive to temperature than pressure.  相似文献   

9.
In this study, high‐pressure treatment (HPT) was applied to the mashing stage of beer production, which involves drying and milling of white malt and subsequent mixing with water. The following parameters were evaluated after pressurisation: β‐glucanase activity, starch gelatinisation and sugar extraction. Evaluation of starch hydrolysis from the malted barley endosperm after HPT was performed by measuring β‐glucanase activity after pressurisation; this enzyme breaks down gums and β‐glucans in wort and is desirable to obtain a good‐quality beer. Soaked malt samples pressurised at 200–600 MPa showed no increase in this activity compared with controls. Conversion of milled malt was evaluated indirectly by measuring the gelatinisation of starch, which began at 400 MPa. Soluble sugars were also measured in pressurised samples from the mashed liquid to investigate saccharification during the mashing stage. After 400 or 600 MPa treatment for 20 min, both the sucrose (g per 100 ml) and extract (l ° kg?1) values were the same as those found in mashed samples following the standard procedure used in the brewing industry (65 °C,90 min). Starch gelatinisation was analysed at different high pressures (200–600 MPa) and it was shown that gelatinisation began at 400 MPa. The HPT time would have to be shorter to make the process commercially attractive. © 2002 Society of Chemical Industry  相似文献   

10.
This study was performed to evaluate the effect of partial gelatinisation on the retrogradation of modified potato starch. The partially gelatinised starches with gelatinisation degree at mean levels of 22.47%, 49.18%, 76.80% and 86.19% were prepared by ball milling (0.5, 1.5, 3 and 10 h). The thermal properties and crystal structure of retrograded starch were examined during 21 days of refrigerated storage at 4 °C. Retrograded starch with high initial gelatinisation degree (86.19%) showed higher retrogradation enthalpy of 6.12 ± 0.18 J g?1 and lower onset temperature of 45.41 ± 0.24 °C than sample with low gelatinisation degree (22.47%) where the results were 1.32 ± 0.18 J g?1 and 54.05 ± 0.03 °C, respectively. During storage, two peaks in the X‐ray diffractograms for starch with high gelatinisation degree appeared and increased rapidly, while the peaks for starch with low gelatinisation degree increased slowly. These results suggest that a certain amount of remainder crystals presented in partially gelatinised starch impeded the retrogradation.  相似文献   

11.
3%、5%和9%(w/v)的脱脂马铃薯淀粉悬浮液在700MPa压力下处理5min,5%(w/v)的脱脂马铃薯淀粉悬浮液分别在600、650、700、750MPa压力下处理5min,随后采用偏光显微镜和X-射线衍射仪研究淀粉结晶结构的变化。结果表明:700MPa压力下,淀粉浓度越低,其偏光十字消失越明显,结晶度降低越多;淀粉乳浓度为5%(w/v)时,随着压力的增大,其偏光十字逐渐消失,淀粉的特征衍射峰逐渐变弱至消失,结晶程度降低,当压力达到750MPa时,其结晶区域完全消失,淀粉最终由多晶态转变为非晶态。  相似文献   

12.
A kinetic study of the inactivation of endogenous pectin methylesterase (PME) in Greek commercial peach pulp under high hydrostatic pressure (HHP; 100–800 MPa) combined with moderate temperature (30–70 °C) was conducted. Thermal inactivation of the enzyme at ambient pressure conditions was also studied. PME inactivation was modeled by first order kinetics at all conditions tested. High pressure and temperature acted synergistically on PME inactivation, except at the high temperature of 70 °C at the middle pressure range (100–600 MPa), where an antagonistic effect of pressure and temperature was observed. At this specific middle pressure range, an increase of pressure processing led to increased inactivation rate constants of peach PME. A multiparameter model was developed to express the PME inactivation rate constant as a function of temperature and pressure process conditions, taking into account the dependence of both activation energy and activation volume on pressure and temperature, respectively. A good correlation between experimental and predicted values of inactivation rate constants was established. This modeling approach enables the quantitative estimation of the HHP–temperature conditions needed to achieve a targeted PME inactivation in the peach pulp.  相似文献   

13.
The inactivation kinetics of Lactobacillus plantarum in a mandarin juice treated by thermal treatment (45–90 °C), high-pressure homogenisation (HPH) (30–120 MPa at 15 and 30 °C) and high-pressure processing (HPP) (150–450 MPa at 15, 30 and 45 °C) were fitted to different Weibullian equations. A synergic effect between pressure and temperature was observed in HPH and HPP treatments achieving 2.38 log cycles after 120 MPa at 30 °C for 10 s (final T of 45 °C) and 6.12 log cycles after 400 MPa at 45 °C for 1 min (final T of 60 °C), respectively. A combined treatment of 100 MPa at 15 °C for 10 s and 300 MPa at 15–30 °C for 1 min in HPH and HPP, respectively, was needed to the first logarithm microbial population decline. Weibull model accurately predicted microorganism inactivation kinetics after HPH and HPP processing when displaying single shoulder or tail in the survivor curves, whereas when a more complex trend was observed after thermal treatment, the double-Weibull equation was found more appropriate to explain such behaviour. Equivalent treatments that achieved the same degree of microbial inactivation (77 °C–10 s in thermal processing, 120 MPa–10 s at 30 °C in HPH processing and 375 MPa–1 min at 30 °C in HPP) were selected to study the effects on quality parameters. The application of dynamic pressure led to a decrease in sedimentable pulp, transmittance and juice redness, thus stabilising the opaqueness and cloudiness of mandarin juice. Pectin methyl esterase (PME) was found to be highly baroresistant to static and dynamic pressure. Carotenoid content remained unaffected by any treatment. This study shows the potential of high-pressure homogenisation as an alternative for fruit-juice pasteurisation.  相似文献   

14.
It is essential to know the temperature-time dependence on the chestnut starch gelatinisation process. With this aim, physicochemical and thermomechanical properties of native chestnut starch and with different gelatinisation degrees, isolated from discarded chestnut fruits under environmental friendly aqueous procedures, were studied. Isolated starch (144.96 ± 1.74 μm) presented high total starch (91.83 ± 0.24%), low damage starch (0.10 ± 0.04%), apparent amylose content of 20.31 ± 1.48% and relative crystallinity of 15.7 ± 0.4% with a C-type pattern. Chestnut starch dispersions were formulated at 40% (w/w). Rheological measures indicated that temperatures below 60 °C were not able to form a hydrogel. The hydrogels formed between 62.5 and 65 °C (peak and final gelatinisation temperature, respectively) developed a stable and strong network with short maturation times and full thermoreversibility. Finally, hydrogels prepared above 65 °C were weaker and no completely thermoreversible. A linear relationship was identified between elastic features determined by rheology (Ggel,1 Hz) and texture (springiness, D1/D2).  相似文献   

15.
The effects of high pressure (HP) treatment (pressure: 220–250–330 MPA; holding time: 5 and 10 min; temperature: 3, 7, 15 and 25°C) on physicochemical characteristics (colour, thiobarbituric acid, trimethylamine nitrogen values) of fresh sea bass fillets were investigated. HP-treated sea bass fillets had higher lightness (Hunter L*) values than untreated sea bass fillets; the magnitude of changes increased with treatment pressure. HP-induced changes in colour generally imparted a cooked sample. The TBA value of HP treated sea bass samples (except 220–330 MPa, 3°C for 5 min) were found to be insignificant (P > 0.05) or significantly (P < 0.05) lower than the untreated samples. TMA-N content of HP treated at 220–250–330 MPa, 3–7–25°C for 10 min sea bass samples were found to insignificant according to the untreated samples. The results obtained from this study showed that the quality of high pressure treated sea bass is best preserved at 220 MPa, 25°C for 5 min.  相似文献   

16.
In order to utilize wheat germ, a nutrient-dense by-product of wheat milling industry, in various food products, different moist and dry heat treatments were used to stabilize and to investigate its influence on protein sub-unit composition, starch pasting characteristics and structural characteristics. The raw germ contained 11% moisture, 31.4% crude protein, 18.4% dietary fibre and 7% fat. Different heat treatments, except for fluidized bed drying, inactivated the lipase activity in germ completely. On the other hand, various heat treatments inactivated lipoxygenase activity to varying extents (78–92%). Extent of gelatinisation, as assessed in electron micrographs was least in steamed and fluidized bed dried samples, while steamed and oven-dried germ and drum dried germ samples exhibited greater extent of gelatinisation. The extent of gelatinisation seemed to be more in drum-dried sample as no intact starch granule was observed. Electrophoretic pattern and sub-unit composition of germ samples remained similar, irrespective of their nature of treatment. Raw germ showed a gelatinisation temperature of 67.9 °C as measured in visco-amylograph and increased to 80.3–88.3 °C for differently treated germ samples, except for drum-dried sample. Differently heated germ samples, depending on their extent of pre-gelatinisation, gave significantly lower peak viscosity (221–268 BU) and break down values (0–9 BU).  相似文献   

17.
Pork meat (low‐fat) batters were prepared without and with the addition of three non‐meat ingredients: (blood) plasma proteins, (dietary) apple fibre and potato starch. The batters were processed by cooking‐alone (70 °C) and by high‐pressure/temperature combination (400 MPa/70 °C). Protein denaturation and starch gelatinisation through the different processings were followed by differential scanning calorimetry. Batter characteristics such as water holding (weight loss) and different texture parameters (texture profile analysis) were used as quality criteria for comparisons among different formulations and processes. Plasma proteins and apple fibre behaved as inert fillers in both kinds of processed batters. Potato starch effects depended on processing conditions to the extent that these influenced the degree of gelatinisation. In pressurised batters (pressure and heating in sequence), regular preservation effects against subsequent thermal denaturation of proteins were observed. Differential scanning calorimetry revealed that starch was also pressure‐preserved from subsequent thermal gelatinisation, which was confirmed by scanning electron microscopy. The presence of native‐like proteins and ungelatinised starch produced cumulative softening effects in pressurised batters. © 2000 Society of Chemical Industry  相似文献   

18.
Katleen J.R. Vallons 《LWT》2011,44(7):1672-1680
In order to evaluate the potential of high pressure (HP) treatment to improve the functional properties of gluten-free flours, the effect of HP on the rheological properties of three gluten-free batters was investigated. Buckwheat, white rice and teff batters (40 g/100 g) were treated for 10 min at 200, 400 or 600 MPa. Changes in the microstructure of the batters after HP-treatment were observed using scanning electron microscopy. Pasting profiles revealed HP-induced starch gelatinisation. Furthermore, Lab-on-a-Chip capillary gel electrophoresis revealed protein polymerisation by thiol/disulphide-interchange reactions in white rice and teff batters. For buckwheat proteins however, no such cross-linking mechanism was observed, which was explained by the absence of free sulfhydryl groups. An increase in viscoelastic properties at higher pressures was observed, and could be explained by the modifications occurring in starch and protein structure. Overall, this study has shown that HP-treatment has the potential to improve functional properties of gluten-free batters.  相似文献   

19.
Ultra-high pressure (UHP) can induce starch gelatinization at the room temperature, while the change of starch architecture could affect the gelatinization process. This work evaluated the effects of annealing on UHP induced starch gelatinization. Native and annealed corn starches were subjected to UHP treatment (300–600 MPa) for 15 min at room temperature. The scanning electron microscopy, confocal laser scanning microscopy, differential scanning calorimetry and X-ray diffraction analysis showed that UHP treatment partially disrupted the ordered structures of native and annealed starches, which made starch gelatinized gradually and a transformation in crystal type from type A to type B. However, compared with native starch, annealing (C3 and C24) delayed the internal and external structure destruction of starch granules, as well as induced a slower decrease in ΔH and relative crystallinity as increasing pressure. Therefore, the suitable UHP treatment can increase the pressure resistance of starch, or delay the UHP gelatinization process.  相似文献   

20.
The effect of different temperature/time/pressure high hydrostatic pressure (HHP) treatment on quality and shelf life of sea bream were studied. Different high-pressure treatments (at 3, 7, 15 and 25 °C, 5–10 min and 220, 250 and 330 MPa) were tested to establish the best processing conditions for quality of sea bream. The effect of the process on the quality of the sample was examined by colour, trimethylamine nitrogen and thiobarbituric acid number analysis. Based on the results of the parameter, the best combinations of HHP treatments were determined as 3 °C/5 min/250 MPa–15 °C/5 min/250 MPa for sea bream. The effects of this combination treatment on sensory, chemical and microbiological properties of sea bream stored at 4 °C were studied. The results obtained from this study showed that the shelf life of untreated and HHP treated stored in refrigerator, as determined by overall acceptability of sensory and microbiological data, is 15 days for untreated sea bream and 18 days for treated sea bream at 3 °C/5 min/250 MPa and at 15 °C/5 min/250 MPa treated sea bream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号