首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在基电解液中加入氮化硅纳米颗粒,对TC4钛合金进行微弧氧化(MAO)处理,研究了Si3N4浓度对微弧氧化层表面形貌、耐蚀性和耐磨性的影响。添加Si3N4的MAO层呈现多孔结构,当Si3N4浓度为1 g/L时,涂层厚度最大,且经过7 d的酸腐蚀试验,该涂层的耐蚀性良好,腐蚀速率最低,约为0.057 mg·cm-2·d-1。随着Si3N4的加入,MAO涂层的抗菌性能先升高后降低。当Si3N4的添加量为1 g/L时,该MAO层的抗菌性能最好。Si3N4的加入能明显提高涂层在模拟海水中的耐磨性。当Si3N4的添加量为3和4 g/L时,所得涂层的摩擦系数低且稳定,且添加3 g/L Si3N4制备来的MAO涂层表现出优异的耐磨性。  相似文献   

2.
Abstract

Si3N4 ceramic was jointed to itself using a filler alloy of Cu-Zn-Ti at 1123-1323 K for 0.3-2.7 ks. Ti content in the Cu-Zn-Ti filler alloy was varied from 5 to 20 at.-%. The effect of brazing parameters, such as brazing temperature, holding time and Ti content, on the mechanical properties and facture processes of the Si3N4/Si3N4 joint were investigated. The results indicated that the increased brazing temperature, holding time and Ti content increase the thickness of the interfacial reaction zone in the Si3N4/filler alloy, and the size and amount of the reaction phases in the filler alloy. Their increases lead to increasing shear strength of the joint. The fracture behaviour of the Si3N4/Si3N4 joint greatly depends on the microstructure of the joint. A suitable thick reaction zone with reaction phases yields the high strength of the Si3N4/ Si3N4 joint.  相似文献   

3.
Pressures (0 to 40 MPa) were applied to the joints of Si3N4 ceramic to 5140 steel during vacuum brazing with Ag-Cu-Ti active filler metal. Pressurization started at various temperatures (873,973, and 1073 K) and ended at room temperature during cooling. Results show that there is an optimum starting temperature to pressurize, at which the maximum room temperature shear strength of the joint is obtained.  相似文献   

4.
《Acta Materialia》2007,55(12):4193-4202
Si3N4/Si3N4w/TiN nanocomposites were fabricated by a hot-pressing technology with different sintering processes. The effect of nanoscale TiN and Si3N4w on the mechanical properties was investigated. The microstructure and indention cracks were observed by scanning electron microscopy, transmission electron microscopy and energy-dispersive spectrometry investigations. The research results showed that Si3N4/Si3N4w20/TiN5 nanocomposites containing 5 vol.% of nanoscale TiN and 20 vol.% of nanoscale Si3N4w, which were sintered under a pressure of 30 MPa at a temperature of 1650 °C for 40 min, had optimum mechanical properties. The addition of both nanoscale TiN and nanoscale Si3N4w contributed to the microstructural evolution and an improvement of the mechanical properties. The toughening and strengthening mechanisms are discussed for Si3N4/Si3N4w20/TiN5 nanocomposites.  相似文献   

5.
Si3N4-TiN nano-composites were fabricated by hot press sintering nano-sized Si3N4 and TiN powders. The microstructure, mechanical properties and thermal shock behavior of Si3N4-TiN nano-composites were investigated. The addition of proper amount TiN particles can significantly increase the flexural strength and the fracture toughness. Si3N4-TiN nano-composites showed both higher critical temperature difference and higher residual strength compared with those of monolithic silicon nitride nano-ceramic when the amount of TiN is less than 15 wt.%. But a further increase in the amount of TiN leaded to a decrease in the thermal shock resistance.  相似文献   

6.
Ni‐Si3N4 nanocomposite films with both the consecutive Ni crystallites and dispersed Si3N4 particles in the nanometer range have been fabricated using DC electroplating technique, and characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), and X‐ray diffraction (XRD). The corrosion resistance of the Ni‐Si3N4 nanocomposite film has been compared to that of pure Ni coating through polarization. Meanwhile, the corrosion process of Ni‐Si3N4 nanocomposite film in neutral 3.5% NaCl solution has been investigated using electrochemical impedance spectroscopy (EIS). The results show that the Ni‐Si3N4 nanocomposite film is more resistant to corrosion than the pure Ni coating. The corrosion of Ni‐Si3N4 nanocomposite film is controlled by electrochemical step, and the whole corrosion process is divided into two sequential stages. The main corrosion type of Ni‐Si3N4 nanocomposite films in neutral 3.5% NaCl solution is pitting.  相似文献   

7.
采用Ag-Cu-Ti+Mo复合钎料连接Si3N4陶瓷,利用SEM,TEM,Nanoindentation研究了钎料内钼颗粒含量对接头组织和力学性能的影响.结果表明,在Si3N4/钎料界面处形成了一层致密的反应层,该反应层由TiN和Ti5Si3组成.接头的中间部分由银基固溶体、铜基固溶体、钼颗粒和Ti-Cu金属间化合物组成.借助于纳米压痕技术测定了接头内Ti-Cu化合物以及钎料金属的弹性模量和硬度值.随着钎料内钼颗粒含量的提高,母材/钎料界面反应层厚度逐渐降低;钎料金属中Ti-Cu化合物数量增多;此外,银和铜基固溶体组织逐渐变得细小.当添加5%Mo时,得到最高的接头强度429.4 MPa,该强度相比合金钎料提高了114.7%.  相似文献   

8.
TiC/Si3N4 composites were prepared using the β-Si3N4 powder synthesized by self-propagating high-temperature synthesis (SHS) and 35 wt.% TiC by spark plasma sintering. Y2O3 and Al2O3 were added as sintering additives. The almost full sintered density and the highest fracture toughness (8.48 MPa·m½) values of Si3N4-based ceramics could be achieved at 1550°C. No interfacial interactions were noticeable between TiC and Si3N4. The toughening mechanisms in TiC/Si3N4 composites were attributed to crack deflection, microcrack toughening, and crack impedance by the periodic compressive stress in the Si3N4 matrix. However, increasing microcracks easily led to excessive connection of microcracks, which would not be beneficial to the strength.  相似文献   

9.
Si3N4/TiN nanocomposites ceramic tool materials were sintered under 30 MPa at 1650 °C for 40 min. The effects of nano-scale TiN on the mechanical properties and microstructure were investigated. The strengthening and toughening mechanisms of Si3N4/TiN nanocomposites were studied by observing the fracture surfaces, samples for TEM and cracks. The oxidation resistance of Si3N4/TiN nanocomposites was also discussed based on the observation of microstructure. The results showed that the elongated Si3N4 grains which were pulled out from the fracture surfaces were reduced with the increase of the addition of nano-scale TiN, and many intragranular TiN grains were observed in Si3N4/TiN nanocomposites. The greater crack deflection and microcrack provided the contributions to the strengthening and toughening mechanisms for Si3N4/1 vol%TiN nanocomposite. However, Si3N4/TiN nanocomposites were oxidized strongly at higher temperature.  相似文献   

10.
The tribological behaviors of the 700 °C annealed sintered polycrystalline diamond (PCD) at various relative humidity (RH) levels were systematically investigated. The comparison of tribological behaviors between the 700 °C annealed PCD and the pristine PCD was made to further understand the tribological mechanisms. The results reveal that the friction inducing carbonaceous transfer film and oxidation and hydrolysis induced tribochemistry reaction dominant the tribological behaviors of the annealed PCD at various RH levels. The low coefficient of friction (COF) obtained in dry environments is attributed to carbonaceous transfer film on the worn Si3N4 surface, which was formed by the layers shearing action of massive tiny diamond grains exfoliated from the annealed PCD surface. The graphitization, oxidation and stress relaxation of the PCD induced by the 700 °C annealing treatment make the tiny diamond grains more easily to exfoliate and be grinded on the Si3N4 interface. It facilitates the formation of friction reducing carbonaceous transfer film, and finally results in the 30% lower COFs than those of pristine PCD at low RH levels (5%–50% RH). Meanwhile, an enhanced wear resistance of PCD can be achieved after 700 °C annealing treatment. The tribochemistry reaction induced by the oxidation and hydrolysis of Si3N4 governs the tribological behaviors of the annealed PCD at high RH levels (60%–99.9% RH). It reveals higher COFs accompanied with serious wear of Si3N4 ball and nearly no wear loss of annealed PCD. The produced SiO2 and silicic acid embeds into massive spalling pits on the annealed PCD surface, resulting in slighter wear of the PCD and Si3N4 than that of the pristine PCD/Si3N4. These results propose that the tribological behaviors of PCD under humid environment can be significantly improved by the 700 °C annealing treatment.  相似文献   

11.
The interfacial tribo-chemistry significantly affects the tribological behaviors of polycrystalline diamond (PCD)/Si3N4, especially introducing acid solution. The results indicate that the friction coefficient rises with increased PH while Si3N4 wears severer and then slighter. Besides, when the hydrogen ions were introducing in the testing environment, the hydrolysis reaction of Si3N4 and oxidation reaction of PCD were promoted on the surfaces with the formation of Si-OH and C-OH. The tribo-pair surfaces absorded hydrogen ions by protonation reaction to form the double electron layer in this process, during which significantly affect the tribological behavior of Si3N4. This work elucidates that the protonation effect of hydrogen ions and bridge effect of hydroxyls, leading to the friction and wear mechanism of PCD/Si3N4.  相似文献   

12.
Si3N4-TaC and Si3N4-ZrC composite ceramics with sintering additives were consolidated in the sintering temperature range of 1500–1600 °C using a resistance-heated hot-pressing technique. The addition of 20–40 mol% carbide improved the sinterability of the ceramics. The ceramics were densely sintered under 0–40 mol% TaC or ZrC at 1500 °C, 0–80 mol% TaC at 1600 °C, and 0–60 mol% ZrC at 1600 °C. In ceramics sintered at 1500 °C, the proportion of α-Si3N4 was larger than that of β-SiAlON; α-Si3N4 transformed mostly to β-SiAlON at 1600 °C. Carbide addition was effective in inhibiting α-Si3N4-to-β-SiAlON phase transformation. Young's modulus for the dense Si3N4-TaC and Si3N4-ZrC ceramics increased with the carbide amount, and the hardness of dense Si3N4-ZrC and Si3N4-TaC ceramics increased from 14 GPa to 17 GPa with increasing α-Si3N4 content. Dense Si3N4-TaC and Si3N4-ZrC ceramics, with larger quantities of α-Si3N4 sintered at 1500 °C, exhibited high hardness; the fracture toughness of these ceramics decreased with increasing α-Si3N4 proportion. Both the hardness and fracture toughness of the dense Si3N4-TaC and Si3N4-ZrC ceramics were strongly related to the proportion of α-Si3N4 in the sintered body.  相似文献   

13.
《Acta Materialia》2001,49(16):3263-3268
In an effort to create elastic-modulus (E) graded materials for contact-damage resistance—free of substantial amounts of glass—silicon nitride (Si3N4)-silicon carbide (SiC) graded materials were processed. The structure of these graded materials is such that Si3N4 (E=300 GPa) is at the contact surface and SiC (E=400 GPa) is in the interior, with a stepwise gradient in composition existing between the two over a depth of 1.6 mm. A pressureless, liquid-phase co-sintering method, in conjunction with a powder-layering technique, was used to achieve this structure. The liquid phase used was yttrium aluminum garnet (YAG). Under spherical indentation, cone-cracks did not form in the graded material, but some inelastic shear deformation was observed. Cone cracks formed in both the monolithic Si3N4 and the monolithic SiC end member materials under identical indentation conditions. Finite element analysis (FEA) of the stresses associated with indentation revealed that the maximum principal tensile stresses outside the Hertzian contact circle, which drive the classical cone-cracks, are reduced by approximately 12% in the graded material relative to the monolithic silicon nitride case. This reduction is significantly lower than what was calculated for the Si3N4-glass case (Part I), owing to the shallower, linear E-gradient over a 1.6 mm depth in Si3N4-SiC, as compared with the power-law, steeper E-gradient over 0.4 mm depth in the Si3N4-glass. It appears that, in addition to the E-gradient, the inelastic deformation contributes to the suppression of cone cracks in the Si3N4-SiC graded material. It is suggested that compressive residual stresses may be present in the Si3N4-SiC graded material, which are also likely to aid in the suppression of cone-cracks.  相似文献   

14.
Abstract

Si3N4 ceramic matrix composites reinforced by carbon fibres (Cf/Si3N4) were prepared by low pressure chemical vapour infiltration at 1250°C using SiCl4 and NH3 as precursor. The as prepared Cf/Si3N4 composites were ablated to determine the mechanism of the ablation resistance and oxidisation resistance by oxyacetylene torch at 2200°C. The morphology and microstructure of the composites were examined by scanning electron microscopy. The phase compositions of the composites were confirmed by energy dispersive X-ray spectroscopy and X-ray diffraction. The results indicated that the matrix of the Cf/Si3N4 composites was composed of the amorphous Si3N4 and nanometre α-Si3N4. A central ablation region and a ring oxidisation region appeared on the surface of the as ablated Cf/Si3N4 composites. Sublimation of the Si3N4 matrix and oxidation of the carbon fibres are the main ablation behaviours in the central region. Oxidation of the Si3N4 matrix and deposition of SiO2 particles are the main ablation behaviour in the ring region. A large number of SiO2 liquid droplets produced during ablation were retained and formed spherical solid particles on the surface of the ring region after ablation. For the mismatch of the coefficient of thermal expansion of the carbon fibres and the Si3N4 matrix, Si3N4 matrix was cracked under the thermal impact of the oxyacetylene flame. With the passive oxidation of the as cracked surface, the continuous SiO2 liquid was formed in the ring region. Subsequently, some residual Si3N4 particles were covered by transparent SiO2 layer to form an amber-like microstructure.  相似文献   

15.
Continuous porous SiC–Si3N4 composite fabricated by a multi-pass extrusion process was investigated using SEM, XRD and TEM techniques. In the continuous pore regions, many single crystalline Si3N4 whiskers with an average diameter of about 1 μm, which could increase the surface area of the porous composites, were observed. However, to make a platinum coating on the composite, the electroless deposition method was adapted. The spot-type platinum particles, with a diameter of about 50–500 nm, attached to the SiC–Si3N4 matrix as well as the surface of the Si3N4 whiskers, which can enhance the catalytic activity.  相似文献   

16.
Lee  D. B.  Lee  Y. C.  Kim  Y. J.  Park  S. W. 《Oxidation of Metals》2000,54(5-6):575-589
The oxidation kinetics of TiAl alloys with and without 3 and 5 wt.%additions of Si3N4 particles were studied at 1173 and1273 K in 1 atm of air. The Si3N4 dispersions wereunstable in the matrix phase, so that some of them reacted with titaniumduring sintering to form Ti5Si3 and dissolvednitrogen. The oxide scale formed on TiAl–Si3N4alloys consisted of an outer TiO2, an intermediate(Al2O3+TiO2), and an inner(TiO2+Al2O3) mixed layers. The enhancedalumina-forming tendency, the presence of discrete SiO2 particlesbelow the outer TiO2 layer, and the improved scale adhesion bySi3N4 dispersions were attributable mainly to theincreased oxidation resistance compared to the Si3N4-freeTiAl alloys. Marker experiments showed that, for TiAl–Si3N4 alloys, the primary mode of scale growth was the outward diffusion oftitanium ions for the outer scale and the inward transport of oxygen ionsfor the inner scale.  相似文献   

17.
Pressureless infiltration process to synthesize Si3N4/Al composite was investigated. Al-2%Mg alloy was infiltrated into Si3N4 and Si3N4 containing 10% Al2O3 preforms in the atmosphere of nitrogen. It is possible to infiltrate Al-2%Mg alloy in Si3N4 and Si3N4 containing 10% Al2O3 preforms. The growth of the dense composite of useful thickness was facilitated by the presence of magnesium powder at the interface and by flowing nitrogen. During infiltration Si3N4 reacted with aluminium to form Si and AIN, the growth of composite was found to proceed in two ways, depending on the Al2O3 content in the initial preform. Firstly, preform without Al2O3 content gives rise to AIN, Al3.27Si0.47 and Al type phases after infiltration. Secondly, perform with 10% Al2O3 content gives rise to AIN-Al2O3 solid solution phase (AION), MgAl2O4, Al and Si type phases. AlON phase was only present in composite, containing 10% Al2O3 in the Si3N4 preforms before infiltration.  相似文献   

18.
The growth kinetics and silicon diffusion coefficients of intermediate silicide phases in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple prepared by spark plasma sintering were investigated in temperatures ranging from 1200 to 1500 °C. The intermediate silicide phases were characterized by x-ray diffraction. The microstructures and components of the MoSi2-Si3N4-WSi2/Mo composites were investigated using scanning electron microscope with energy-dispersive spectroscopy. A special microstructure with MoSi2 core surrounded by a thin layer of (Mo,W)Si2 ring was found in the MoSi2-Si3N4-WSi2 composites. The intermediate layers of Mo5Si3 and (Mo,W)5Si3 in the MoSi2-Si3N4-WSi2/Mo diffusion couples were formed at different diffusion stages, which grew parabolically. Activation energy of the growth of intermediate layers in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo diffusion couple was calculated to be 316 ± 23 kJ/mol. Besides, the hindering effect of WSi2 addition on the growth of intermediate layers was illustrated by comparing the silicon diffusion coefficients in MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2/Mo and MoSi2-3.5 vol.% Si3N4/Mo diffusion couples. MoSi2-3.5 vol.% Si3N4-5.0 vol.% WSi2 coating on Mo substrate exhibited a better high-temperature oxidation resistance in air than that of MoSi2-3.5 vol.% Si3N4 coating.  相似文献   

19.
Vitreous bond silicon carbide wheel for grinding of silicon nitride   总被引:1,自引:0,他引:1  
This study investigates the grinding of sintered silicon nitride using a SiC wheel with a fine abrasive grit size and dense vitreous bond. The difference of hardness between the green SiC abrasive and sintered Si3N4 workpiece (25.5 vs. 13.7 GPa) is small. Large grinding forces, particularly the specific tangential grinding forces, are observed in SiC grinding of Si3N4. The measured specific grinding energy is high, 400–6000 J/mm3, and follows an inverse relationship relative to the maximum uncut chip thickness as observed in other grinding studies. The SiC wheel wears fast in grinding Si3N4. The G-ratio varies from 2 to 12. Two unique features in SiC grinding of Si3N4 are the trend of increasing G-ratio at higher material removal rate and the excellent surface integrity, with 0.04–0.1 μm Ra and no visible surface damage. For a specific material removal rate, surface cracks along the grinding direction are generated on the ground surface. The problem of chatter vibration was identified at high material removal rates. Periodic and uneven wheel loading marks and clusters of workpiece surface cracks across the grinding direction could be observed at high material removal rates. This study demonstrates that the SiC grinding wheel can be utilized for precision form grinding of Si3N4 to achieve good surface integrity under a limited material removal rate.  相似文献   

20.
Pure Si2N2O ceramic is fabricated by nitridizing a powder mixture of Si and SiO2. Results show that the prepared Si2N2O is composed of nano-particles with a size of about 50 nm. Analysis and discussion are focused on the formation mechanism of the nano-grained Si2N2O ceramic based on thermodynamics calculation, micro-morphologies and phase composition analysis. Preferential formation of Si3N4 on the surface of nano-SiO2 particles at below melting point of Si and then successive in-situ transformation of SiO2 and Si3N4 into Si2N2O at above melting point of Si are considered as the key reasons to form the pure nano-grained Si2N2O ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号