首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The effect of pictorial illusion on prehension and perception   总被引:1,自引:0,他引:1  
The present study examined the effect of a size-contrast illusion (Ebbinghaus or Titchener Circles Illusion) on visual perception and the visual control of grasping movements. Seventeen right-handed participants picked up and, on other trials, estimated the size of "poker-chip" disks, which functioned as the target circles in a three-dimensional version of the illusion. In the estimation condition, subjects indicated how big they thought the target was by separating their thumb and forefinger to match the target's size. After initial viewing, no visual feedback from the hand or the target was available. Scaling of grip aperture was found to be strongly correlated with the physical size of the disks, while manual estimations of disk size were biased in the direction of the illusion. Evidently, grip aperture is calibrated to the true size of an object, even when perception of object size is distorted by a pictorial illusion, a result that is consistent with recent suggestions that visually guided prehension and visual perception are mediated by separate visual pathways.  相似文献   

2.
The effect of writing on the concurrent visual perception of letters was investigated in a series of studies using an interference paradigm. Participants drew shapes and letters while simultaneously visually identifying letters and shapes embedded in noise. Experiments 1–3 demonstrated that letter perception, but not the perception of shapes, was affected by motor interference. This suggests a strong link between the perception of letters and the neural substrates engaged during writing. The overlap both in category (letter vs. shape) and in the perceptual similarity of the features (straight vs. curvy) of the seen and drawn items determined the amount of interference. Experiment 4 demonstrated that intentional production of letters is not necessary for the interference to occur, because passive movement of the hand in the shape of letters also interfered with letter perception. When passive movements were used, however, only the category of the drawn items (letters vs. shapes), but not the perceptual similarity, had an influence, suggesting that motor representations for letters may selectively influence visual perception of letters through proprioceptive feedback, with an additional influence of perceptual similarity that depends on motor programs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Contextual cues such as linear perspective and relative size can exert a powerful effect on the perception of objects. This fact is demonstrated by the illusory effects that can be induced by such cues (e.g., the Ponzo railway track and Titchener circles illusions). Several recent studies have reported, however, that visual illusions based on such cues have little or no influence on the visuomotor mechanisms used to guide hand action. Furthermore, evidence of this sort has been cited in support of a distinction between visual perception and the visual control of action. In the current study, the authors investigated the effect of the Ponzo visual illusion on the control of hand action, specifically, the scaling of grip force and grip aperture during prehension movements. The results demonstrate that grip force scaling is significantly influenced by the Ponzo visual illusion, whereas the scaling of grip aperture is unaffected by the illusion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The influence of stereoscopic vision on the perception of optic flow fields was investigated in experiments based on a recently described illusion. In this illusion, subjects perceive a shift of the center of an expanding optic flow field when it is transparently superimposed by a unidirectional motion pattern. This illusory shift can be explained by the visual system taking the presented flow pattern as a certain self-motion flow field. Here we examined the dependence of the illusory transformation on differences in depth between the two superimposed motion patterns. Presenting them with different relative binocular disparities, we found a strong variation in the magnitude of the illusory shift. Especially when translation was in front of expansion, a highly significant decrease of the illusory shift occurred, down to 25% of its magnitude at zero disparity. These findings confirm the assumption that the motion pattern is interpreted as a self-motion flow field. In a further experiment we presented monocular depth cues by changing dot size and dot density. This caused a reduction of the illusory shift which is distinctly smaller than under stereoscopic presentation. We conclude that the illusory optic flow transformation is modified by depth information, especially by binocular disparity. The findings are linked to the phenomenon of induced motion and are related to neurophysiology.  相似文献   

5.
Detecting visual motion is computationally equivalent to detecting spatiotemporally oriented contours. The question addressed in this study is whether the illusory oriented contour in the space-space domain induces corresponding illusory motion perception. Two experiments were conducted. In experiment 1, the Café Wall pattern, which elicits a strong illusion of orientation (Café Wall illusion), was found to induce an illusion of motion when this pattern was converted to the space-time domain. The strength of the motion illusion depends on the mortar luminance and width, as for the Café Wall illusion. In experiment 2, the adaptation to this illusion of motion was found to induce a motion aftereffect in a static test, which indicates that a first-order-motion system contributes to the induction of the motion illusion. In fact, the motion-energy model was able to predict the strength of this motion aftereffect.  相似文献   

6.
Five illusions involving distortions in the perception of limb position, movement, and weight are described in the context of their contribution to understanding the sensory processes involved in proprioception. In particular, these illusions demonstrate that the position sense representation of the body and the awareness of limb movement result from the cross-calibration of visual and proprioceptive signals. Studies of the vibration illusion and phantom-limb phenomenon indicate that the perception of limb movement and position are encoded independently and can be dissociated. Postural aftereffects and the illusions of movement induced by vibration highlight the remarkable lability of this sense of limb position, which is a necessary feature for congruence between the spatial senses. Finally, I discuss the role of corollary discharges in the central processing of afferent information with respect to the size-weight and vibration illusions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The purpose of this study was to determine the precision of proprioceptive localization of the hand in humans. We derived spatial probability distributions which describe the precision of localization on the basis of three different sources of information: proprioceptive information about the left hand, proprioceptive information about the right hand, and visual information. In the experiment subjects were seated at a table and had to perform three different position-matching tasks. In each task, the position of a target and the position of an indicator were available in a different combination of two of these three sources of information. From the spatial distributions of indicated positions in these three conditions, we derived spatial probability distributions for proprioceptive localization of the two hands and for visual localization. For proprioception we found that localization in the radial direction with respect to the shoulder is more precise than localization in the azimuthal direction. The distributions for proprioceptive localization also suggest that hand positions closer to the shoulder are localized more precisely than positions further away. These patterns can be understood from the geometry of the arm. In addition, the variability in the indicated positions suggests that the shoulder and elbow angles are known to the central nervous system with a precision of 0.6-1.1 degrees. This is a considerably better precision than the values reported in studies on perception of these angles. This implies that joint angles, or quantities equivalent to them, are represented in the central nervous system more precisely than they are consciously perceived. For visual localization we found that localization in the azimuthal direction with respect to the cyclopean eye is more precise than localization in the radial direction. The precision of the perception of visual direction is of the order of 0.2-0.6 degrees.  相似文献   

8.
Two experiments used Müller-Lyer stimuli to test the predictions of the planning-control model (S. Glover, 2002) for aiming movements. In Experiment 1, participants aimed to stimuli that either remained the same or changed upon movement initiation. Experiment 2 was identical except that the duration of visual feedback for online control was manipulated. The authors found that the figures visible during movement planning and online control had additive effects on endpoint bias, even when participants had ample time to use visual feedback to modify their movements (Experiment 2). These findings are problematic not only for the planning-control model but also for A. D. Milner and M. A. Goodale's (1995) two visual system explanation of illusory bias. Although our results are consistent with the idea that a single representation is used for perception, movement planning, and online control (e.g., V. H. Franz, 2001), other work from our laboratory and elsewhere suggests that the manner in which space is coded depends on constraints associated with the specific task, such as the visual cues available to the performer. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

9.
We can perceive the continuity of an object or event by integrating spatially/temporally discrete sensory inputs. The mechanism underlying this perception of continuity has intrigued many researchers and has been well documented in both the visual and auditory modalities. The present study shows for the first time to our knowledge that an illusion of continuity also occurs with vibrotactile stimulation. We found that when the brief temporal gaps inserted into a vibrotactile target were filled with vibrotactile noise, the target vibration was perceived to continue through the noise if the target vibration was sufficiently weak relative to the noise. It is important that the illusory continuity of the vibration cannot be distinguished from the physically continuous vibration. These results therefore suggest that the continuity illusion is common to multiple sensory modalities and that it reflects a fundamental principle of perception. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
In Exps 1 and 2, aiming movements were performed with and without visual feedback in young and elderly adults. The initial (acceleration and deceleration phases) and secondary movement components were analyzed. Although deceleration phase accuracy decreased without visual feedback in both age groups, accuracy diminished as movement amplitude increased only in the elderly. This suggested that the elderly were more dependent on visual feedback to modify motor programs for longer duration movements. Velocity also increased less with increasing amplitude and target size in the elderly, which was related to impaired preprogramming (acceleration phase) and implementation (deceleration phase) of higher forces. This conclusion was confirmed directly in Exp 2 because only the deceleration phase was affected by the removal of a visual feedback of arm position when availability of visual information could not be predicted before movement. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Investigated the role of visual information during reaching by comparing conditions in which visual information was either available or unavailable during the movement. In this study, 24 participants reached out and picked up a bar placed on a background grating that induced an illusion in the perceived orientation of the bar. The illusion had a large effect on the orientation of the hand early in the reaches, but this effect decreased continuously as the hand approached the target. This pattern occurred whether or not participants were allowed vision of the hand and target while reaching. These results are consistent with a "planning/control" model of action, in which actions are planned using a context-dependent visual representation but monitored and corrected on-line using a context-independent visual representation. The hypothesized neural bases of these representations are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
This research comparatively assessed grouping mechanisms of humans (n = 8) and baboons (n = 8) in an illusory task that employs configurations of target and surrounding circles arranged to induce the Ebbinghaus (Titchener) illusion. Analyses of response behaviors and points of subjective equality demonstrated that only humans misjudged the central target size under the influence of the Ebbinghaus illusion, whereas baboons expressed a more veridical perception of target sizes. It is argued that humans adopted a global mode of stimulus processing of the illusory figure in our task that has favored the illusion. By contrast, a strong local mode of stimulus processing with attention restricted to the target must have prevented illusory effects in baboons. These findings suggest that monkeys and humans have evolved modes of object recognition that do not similarly rely on the same gestalt principles. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.  相似文献   

14.
Descending and reflex pathways usually converge on common interneurons and motoneurons. This implies that active movements may result from changes in reflex parameters produced by control signals conveyed by descending systems. Specifically, according to the lambda-model, a fast change in limb position is produced by a rapid change in the threshold of the stretch reflex. Consequently, external perturbations may be ineffective in eliciting additional reflex modifications of electromyographic (EMG) patterns unless the perturbations are relatively strong. In this way, the model accounts for the relatively weak effects of perturbations on the initial agonist EMG burst (Ag1) usually observed in fast movements. On the other hand, the same model permits robust reflex modifications of the timing and shape of the Ag1 in response to strong perturbations even in the fastest movements. To test the model, we verified the suggestion that the onset time of the Ag1, even in the fastest movements, depends on proprioceptive feedback in a manner consistent with a stretch reflex. In control trials, subjects (n = 6) made fast unopposed elbow flexion movements of approximately 60 degrees (peak velocity 500-700 degrees/s) in response to an auditory signal. In random test trials, a brief (50 ms) torque of 8-15 Nm either assisting or opposing the movement was applied 50 ms after this signal. Subjects had no visual feedback and were instructed not to correct arm deflections in case of perturbations. In all subjects, the onset time of the Ag1 depended on the direction of perturbation: it was 25-60 ms less in opposing compared with assisting load conditions. Assisting torques caused, at a short latency of 37 ms, an additional antagonist EMG burst preceding the Ag1. The direction-dependent effects of the perturbation persisted when cutaneous feedback was suppressed. It was concluded that the direction-dependent changes in the onset time and duration of the Ag1 as well as the antagonist activation preceding the Ag1 resulted from stretch reflex activity elicited by the perturbations rather than from a change in the control strategy or cutaneous reflexes. The results support the hypothesis on the hierarchical scheme of sensorimotor integration in which EMG patterns and movement emerge from the modification of the thresholds and other parameters of proprioceptive reflexes by control systems.  相似文献   

15.
The proprioceptive feedback associated with the performance of even quite simple movements is always generated by the whole set of muscles subjected to mechanical deformation (lengthening, shortening, contraction, etc.) during that particular movement. The question was addressed here as to how muscle spindle feedbacks arising from agonist and antagonist muscles may contribute to the coding of movement parameters such as the direction and velocity. For this purpose, the activity of single muscle spindle afferents located in the lateral peroneal nerve was analysed using the microneurographic technique, in human subjects performing repetitive voluntary movements, i.e., plantar/dorsal flexions of the ankle, at three different velocities (3, 4.5 and 6 degrees/s). The data obtained suggest that in humans, the direction of a slow movement may be specified on the basis of the spindle discharge rate, which is greater in the stretched than in the shortened muscle, and that the velocity of this movement might be correlated with the difference between the spindle activity occurring in the agonist and antagonist muscles. These neurophysiological data are in agreement with the results of previous psychophysical studies showing for example that a sensation of illusory movement can be elicited only when there exists an imbalance between the agonist versus antagonist vibration-induced Ia inputs. In addition, the greater the difference between the vibration frequencies applied to the two antagonist muscles, the higher the perceived movement velocity was found to be. All in all, joint movement perception seems to result from the co-processing by the central nervous system of the multiple spindle feedbacks originating from the whole set of muscles involved in the performance of a movement.  相似文献   

16.
Recent studies of position-related proprioceptive sense have provided evidence of a nonpreferred left arm advantage in right-handed individuals. The present study sought to determine whether similar asymmetries might exist in “dynamic position” sense. Thirteen healthy, right-handed adults were blindfolded and seated with arms placed on instrumented manipulanda. In Part 1, subjects performed dynamic position matching of 3 target elbow amplitudes determined with the preferred or nonpreferred arm, and then matched during movement of the same or opposite elbow. In Part 2, a similar paradigm was used, but with varying target determination speeds to account for the so called “tau effect.” Overall, it was found that errors were smaller when the matching phase involved the nonpreferred arm, especially for larger target amplitudes. This asymmetry was independent of the tau effect and likely reflects specialization of the right hemisphere/left arm for proprioceptive feedback processing that is either position- or dynamic position-related. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Induced movement, illusory movement in a stationary stimulus resulting from adjoining movement, has received steady experimental investigation over the last 70 years or so. It is observed under different viewing conditions in a wide variety of displays that differ considerably in overall size and in form of inducing and induced stimuli. Explanations have been diverse, some being based on relations within the display and others invoking mediation by other aspects of the observer's perception. Probably, no one explanation can account for all forms of induced movement. Current knowledge about induced movement may have important implications for visual perception of object motion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The authors argue that changes in the perception of vertical and horizontal caused by local visual cues can account for many classical visual illusions. Because the perception of orientation is influenced more by visual cues than gravity-based cues when the observer is tilted (e.g., S. E. Asch and H. A. Witkin, 1948), the authors predicted that the strength of many visual illusions would increase when observers were tilted 30°. The magnitude of Z?llner, Poggendorff, and Ponzo illusions and the tilt-induction effect substantially increased when observers were tilted. In contrast, the Müller-Lyer illusion and a size constancy illusion, which are not related to orientation perception, were not affected by body orientation. Other theoretical approaches do not predict the obtained pattern of results. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Conducted 2 experiments to determine the extent to which attention plays a role in the phonemic restoration illusion and to infer from this the nature of attention in auditory word perception. Exp I examined the effect of training on the magnitude of the phonemic restoration illusion. 24 Ss received training with the potentially restorable stimuli (972 trials with feedback); in addition, the presence or absence of an attentional cue, contained in a visual prime preceeding each trial, was varied between groups of Ss. Findings reveal that cuing the identity and location of the critical phoneme of each test word allowed Ss to attend to the critical phoneme, thereby inhibiting the illusion, but only when the prime also identified the test word itself. Exp II was a 2-part replication of Exp I, using 92 Ss and some modifications of the conditions. Results show that when the prime provided only the identity or location of the critical phoneme, or only the identity of the word, Ss performed identically to those Ss for whom the prime contained no information at all about the test word. Training did not produce any generalized learning about the types of stimuli used. Results indicate that attention is necessary to perceive phonemic units selectively and is focused through the level that has primacy in the perception of spoken words, the mental lexicon. (22 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Everyone has probably experienced chronostasis, an illusion of time that can cause a clock's second hand to appear to stand still during an eye movement. Though the illusion was initially thought to reflect a mechanism for preserving perceptual continuity during eye movements, an alternative hypothesis has been advanced that overestimation of time might be a general effect of any action. Contrary to both of these hypotheses, the experiments reported here suggest that distortions of time perception related to an eye movement are not distinct from temporal distortions for other kinds of responses. Moreover, voluntary action is neither necessary nor sufficient for overestimation effects. These results lead to a new interpretation of chronostasis based on the role of attention and memory in time estimation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号