首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用催化湿式氧化技术处理在生产氯酯磺草胺过程中产生的高浓度有机废水。实验表明制备的复合负载型催化剂CuO-Co3O4-Mn02/ZrO2-CeO2在处理该废水时具有较好的催化活性。通过对催化剂投加量、反应温度、氧气分压和废水pH值等工艺条件的考察,得出最佳的工艺条件为:催化剂投加量为10g/L,反应温度为220℃,氧气分压为2.5MPa,废水初始pH值为10.5,在此条件下反应120min,CODcr去除率达到98.2%。  相似文献   

2.
采用催化湿式氧化技术处理生产氯酯磺草胺过程中产生的高浓度有机废水。实验表明制备的复合负载型催化剂CuO-Co3O4-MnO2/ZrO2-CeO2在处理该废水时具有较好的催化活性。通过对催化剂投加量、反应温度、氧气分压和废水pH等工艺条件的考察,得出最佳的工艺条件为:催化剂投加量10g/L、反应温度220℃、氧气分压2.5MPa、废水初始pH值10.5,在此条件下反应120min,CODCr去除率达到98.2%。  相似文献   

3.
采用催化湿式氧化技术处理在生产三氯吡啶醇钠过程中产生的高浓度有机废水。实验表明制备的复合负载型催化剂CuO-Co3O4-CeO2/TiO2-ZrO2在处理该废水时具有较好的催化活性。通过对反应温度、氧气分压、废水pH及催化剂投加量等工艺条件的考察,得出最佳的工艺条件为:反应温度为230℃,氧气分压为2.0 MPa,废水初始pH值为6.0,催化剂投加量为8 g/L,在此条件下反应150 min,CODCr去除率达到97.2%。  相似文献   

4.
CWAO法处理噻螨酮生产废水的催化剂研究   总被引:1,自引:0,他引:1  
以过渡金属氧化物CuO为主活性组分,通过加入第二活性组分MnO2和掺人电子助剂La2O3,研制出适用于催化湿式氧化(CWAO)法处理噻螨酮生产过程中产生的高浓度有机废水(CODcr 15 730 mf/L)的复合催化剂.考察了浸渍液中各组分浓度、焙烧温度和焙烧时间等制备条件对催化剂的催化活性和稳定性的影响.确定了最佳制备条件.试验结果表明,该复合催化剂在处理此种有机废水时表现出较好的催化活性和稳定性.在230℃,氧气分压为2.5 MPa和pH为7.3的条件下,催化湿式氧化该废水,在120 min内,CODCr去除率达到96.1%,而在相同条件下未加催化剂的湿式氧化CODCr去除率只有50.3%.  相似文献   

5.
文章以气田钻井废水为研究对象,对经过混凝破胶处理后的废水进行臭氧氧化处理,探究了臭氧单独氧化、O3/H2O2氧化、O3/Fe2+氧化去除CODcr的最优处理条件.研究表明:在三种氧化方法中,O3/H2O2氧化具有最好的CODcr去除效果,其最优反应条件为在pH=10,臭氧投加量为0.5 g/h·L双氧水投加量为0.4%,氧化2h后废水的CODcr去除率可达69.1%.  相似文献   

6.
针对化工集装罐清洗废水中含酚废水浓度大的特点,采用湿式催化氧化法进行了较深入的研究。对硝酸铜-AC制备CuO/AC催化剂过程中的浸渍液浓度、焙烧温度、焙烧时间等影响因素进行探讨;用该催化剂催化氧化降解模拟苯酚废水,对反应温度、氧化剂投加量、催化剂投加量、反应时间等工艺参数进行优化,确定最佳反应条件并进行了应用研究。研究结果表明,硝酸铜-AC制备CuO/AC催化剂的最佳条件为:硝酸铜质量分数为3%,浸渍温度为30℃,浸渍时间为6 h,焙烧温度为300℃,焙烧时间为3 h。湿式催化氧化法处理苯酚废水的最佳工艺条件为:反应温度为170℃,反应时间为1 h,催化剂投加质量浓度为2 g/L,氧化剂H2O2按m(H2O2)∶m(COD)=3投加,含酚清洗废水的COD去除率达到95%以上,处理效果显著。  相似文献   

7.
采用湿式氧化(WAO)和催化湿式氧化(CWAO)工艺对制药废水进行预处理,考察温度,反应时间,初始氧分压,pH对COD去除率的影响。在反应温度260℃、初始氧分压2 MPa、反应时间2 h的条件下,采用WAO工艺的废水COD去除率达到74.1%,B/C由0.22提高到0.45,生化性显著改善。CWAO工艺通过添加5 g催化剂,COD去除率为91.3%,有效提高了湿式氧化法的处理效果。  相似文献   

8.
倪晓晓 《广州化工》2012,(3):104-106,116
实验探讨了O3/H2O2高级氧化法预处理某制药酒精废水过程中H2O2投加量、pH值、反应时间、臭氧发生器氧气流量等因素对CODCr去除率的影响。实验得出的最佳反应条件是:H2O2投加量98 mmol/L,pH值11,氧气流量60 L/h,反应时间90 min,在最佳条件下反应后废水CODCr去除率46.3%,TOC去除率50.5%,B/C从0.08提高到0.32,废水可生化性明显提高,能够满足后续生化处理的需要。  相似文献   

9.
本文采用微波催化湿式氧化技术处理含酚废水,考察了催化剂投加量、氧化剂添加量、反应温度、反应时间、初始pH值等对废水处理效果的影响.确定了最佳工艺条件:硫酸铜投加量3g/L,过氧化氢投加量40 g/L,初始pH值5.5,反应温度80℃、反应时间60min.该工艺条件下,废水TOC去除率可达到85%以上,可生化性测试B/C...  相似文献   

10.
郭绍义  王红新 《煤化工》2008,36(2):19-22
对比Cu-Mn/Al 2O3、Cu-Zn/Al 2O3、Cu-Ti/Al 2O3、Cu-Ce/Al 2O3等系列催化剂的催化性能,优选出Cu-Ce/Al 2O3催化剂,考察催化湿式氧化处理焦化废水的工艺条件、催化剂活性及稳定性,结果显示,利用Cu-Ce/Al 2O3(摩尔比Cu:Ce=3:1)催化剂处理焦化废水时,该催化剂的加入可使焦化废水COD去除率提高40%,处理效果随温度升高明显增强,在保证氧气供应充足的情况下,适当增加氧气分压,对处理效果增加不太明显。其优化工艺条件为:反应温度180℃,总压4.8MPa,氧气分压1.4MPa,氧化反应时间120mi n,焦化废水COD去除率最高可达94.3%,且金属离子溶出量较少,该催化剂持续工作500h内,其催化活性和稳定性良好。  相似文献   

11.
分别以沉淀法、共沸蒸馏法和高温老化法制备ZrO2载体,采用等体积浸渍法制备Ru/ZrO2催化剂,用于催化湿式氧化法处理异佛尔酮废水。研究了反应温度、催化剂用量及反应时间对异佛尔酮废水乙酸浓度、COD去除率、TOC去除率及废水可生化性的影响。废水经催化湿式氧化处理的中间产物主要为乙酸,可由产甲烷菌转化为甲烷。结果表明,提高反应温度、增加催化剂用量及延长反应时间均可提高异佛尔酮废水COD去除率、TOC去除率及废水可生化性。在270 ℃、氧分压2.5 MPa和催化剂用量9 g·L-1条件下,超过180 min异佛尔酮废水COD及TOC去除率分别可达90.4%和84.9%。在270 ℃、氧分压2.5 MPa和催化剂用量1 g·L-1反应条件下,120 min时异佛尔酮废水乙酸浓度最大,为5 582.98 mg·L-1。催化湿式氧化处理后出水利用产甲烷菌进行厌氧发酵,反应9天产甲烷体积达到最大值820 mL。  相似文献   

12.
在鼓泡式固定床反应器连续反应装置上对吡唑甲醛肟生产过程中产生的高浓度有机废水进行催化湿式氧化处理。实验表明制备的复合负载型催化剂CuO—MnO2-Cr2O3/ZrO2-CeO2在处理该废水时具有较好的催化活性。通过对反应温度、反应压力、反应空速、气液比和进水pH值等工艺条件的考察,得出最佳的工艺条件为:反应温度T=220℃,反应压力P=5.8MPa,空速=1.8h^-1,V(气):V(水)=260:1,进水pH值=9,在此条件下CODer去除率达到95.2%。  相似文献   

13.
姜刚村  程迪  李鹏 《染料与染色》2012,49(2):39-41,22
研究了染料废水中苯胺类污染物的处理工艺.催化湿式氧化预处理后的水经A/O工艺生化处理,可以达到污水综合排放标准GB8978-1996一级.催化湿式氧化的预处理条件的最佳工艺条件:温度170℃,催化剂投加量1000 mg/L,空气压力5.0 MPa,反应时间2小时,苯胺类去除率99%.  相似文献   

14.
用不同催化剂对催化湿式氧化法在降解垃圾渗滤液作用方面的探索,通过实验测定悬浮物去除率的变化,筛选出高效催化剂,比较不同反应条件对悬浮物去除率的影响,优化操作条件,使其在催化湿式氧化处理垃圾渗滤液有较高的突破。最终确定最佳工艺条件为:催化剂用量0.372 g,金属离子质量浓度300mg/L,反应温度为180℃,氧分压为3.5 MPa,进水pH值为8.10,搅拌速度为500 r/min。  相似文献   

15.
康永  高建峰 《化工科技》2009,17(4):29-31
采用微波催化氧化法对苯胺模拟水的处理进行了初步的探讨分析;考察了微波时间、微波功率、pH值、H2O2浓度、高分子负载型催化荆质量对废水中苯胺降解的影响,确定了最佳工艺条件.在最佳工艺条件下,CODcr的去除率达到98%以上.  相似文献   

16.
萃取-Fenton氧化法预处理富马酸生产废水   总被引:1,自引:0,他引:1  
采用萃取-Fenton氧化相结合的工艺来预处理富马酸生产废水,考察了萃取剂种类、油水体积比、萃取剂与稀释剂体积比、萃取反应pH值、温度等因素对萃取效果的影响,同时研究了Fenton氧化法对萃取后废水的进一步处理效果,结果表明:以磷酸三丁酯为络合萃取剂,异辛醇为稀释剂,最佳油水体积比为0.8,最佳稀释体积比为V(萃取剂)∶V(稀释剂)=3∶1,最佳pH值为废水初始pH值,一次萃取废水CODCr去除率为73%;对萃取后废水采用Fenton氧化法进一步处理,H2O2投加量为9/5 Qth(理论投加量),n(Fe2+)∶n(H2O2)=1∶4,反应最佳pH值为3,反应时间为1 h,处理后废水CODCr质量浓度降至1 000 mg/L,总的CODCr去除率达到96.5%。  相似文献   

17.
采用混凝-微电解-催化氧化工艺预处理含拉开粉的丁腈橡胶废水,通过静态和动态放大试验探讨了微电解时的pH值、反应时间、铁炭比、气水比以及催化氧化时的pH值、反应时间、氧化剂和催化剂用量等对化学需氧量、悬浮物及拉开粉去除率的影响。结果表明,在微电解反应时pH值为3~4、铁炭比为2/1(质量比)、反应时间为30min、气水比为12/1(体积比),以及催化氧化反应时pH值为5左右、催化剂质量浓度为0.75g/L、氧化剂质量浓度为5g/L、反应时间4h的条件下,处理后废水的悬浮物去除率可达到90%以上,化学需氧量去除率达到45%以上,拉开粉的去除率达到90%以上。生物化学需氧量与化学需氧量比值由0.08提高到0.16,废水可生化性得到提高,水中悬浮物得以大幅度降低,水质得到改善,为后续处理奠定了基础。  相似文献   

18.
采用工业生产中排放的H酸废水作为研究对象,探讨了臭氧-H2O2氧化的预处理方法对该废水的处理效果。结果表明:在单独臭氧氧化反应体系中,初始CODCr的质量浓度为1 200 mg/L,pH值为7,臭氧氧化时间在20 min(通量为1 L/min)时,CODCr和色度去除率分别为36.7%和95%。单独H2O2氧化反应体系中,H2O2投加量为8 mL/L时,CODCr去除率为7.7%,H2O2投加量达到60 mL/L时,CODCr去除率最高仅达到25.6%。臭氧-H2O2联用体系中,相同初始CODCr浓度、pH值、臭氧氧化时间及臭氧通量条件下,质量分数为3%的H2O2溶液投加量为8 mL/L时,CODCr和色度去除率分别可达48.8%和98%。因此,臭氧-H2O2氧化的预处理方法对H酸废水降解效果良好,且明显优于单独臭氧氧化以及单独H2O2氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号