首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline ZnO thin films were prepared on glass substrates by using spin coating technique. The effect of annealing temperature (400-700 °C) on structural, compositional, microstructural, morphological, electrical and optical properties of ZnO thin films were studied by X-ray diffraction (XRD), Energy dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Electrical conductivity and UV-visible Spectroscopy (UV-vis). XRD measurements show that all the films are nanocrystallized in the hexagonal wurtzite structure and present a random orientation. The crystallite size increases with increasing annealing temperature. These modifications influence the optical properties. The AFM analysis revealed that the surface morphology is smooth. The HRTEM analysis of ZnO thin film annealed at 700 °C confirms nanocrystalline nature of film. The SEM results shows that a uniform surface morphology and the nanoparticles are fine with an average grain size of about 40-60 nm. The dc room temperature electrical conductivity of ZnO thin films were increased from 10−6 to 10−5 (Ω cm)−1 with increase in annealing temperature. The electron carrier concentration (n) and mobility (μ) of ZnO films annealed at 400-700 °C were estimated to be of the order of 4.75-7.10 × 1019 cm−3 and 2.98-5.20 × 10−5 cm2 V−1 S−1.The optical band gap has been determined from the absorption coefficient. We found that the optical band gap energy decreases from 3.32 eV to 3.18 eV with increasing annealing temperature between 400 and 700 °C. This means that the optical quality of ZnO films is improved by annealing.It is observed that the ZnO thin film annealing at 700 °C has a smooth and flat texture suited for different optoelectronic applications.  相似文献   

2.
The effect of ZnO addition on the sinterability and ionic conductivity of Ce0.8Y0.2O1.9 is investigated. Ce0.8Y0.2O1.9 is prepared using an EDTA-citrate complexing method in order to further improve its electrical properties. Using a ZnO content over 1 mol %, the sinterability of Ce0.8Y0.2O1.9 is significantly improved by reducing the sintering temperature from 1500 to 1350 °C and a relative density of above 95% was achieved. The highest ionic conductivity of 0.0516 S cm−1 was obtained at 750 °C for (YDC)0.99(ZnO)0.01 sintered at 1350 °C. Pure YDC sintered at 1500 °C, on the other hand, yielded 0.0289 S cm−1.  相似文献   

3.
CuO nanoparticles with average diameter of about 20 nm were accumulated on surface of sol-gel silica thin films heat treated at 300 °C in air. Heat treatment of the CuO nanoparticles at 600 °C in a reducing environment resulted in effective reduction of the nanoparticles and penetration of them into the film. While the thin films heat treated at 300 °C exhibited a strong antibacterial activity against Escherichia coli bacteria, the reducing process decreased their antibacterial activity. However, by definition of normalized antibacterial activity (antibacterial activity/surface concentration of coppers) it was found that Cu nanoparticles were more toxic to the bacteria than the CuO nanoparticles (by a factor of ∼ 2.1). Thus, the lower antibacterial activity of the reduced thin films was assigned to diffusion of the initially accumulated copper-based nanoparticles into the film. The CuO nanoparticles also exhibited a slight photocatalytic activity for inactivation of the bacteria (∼ 22% improvement in their antibacterial activity). Instead, the normalized antibacterial activity of the Cu nanoparticles covered by a thin oxide layer highly increased (∼ 63% improvement) in the photocatalytic process. A mechanism was also proposed to describe the better antibacterial activity of the Cu than CuO nanoparticles in dark and under light irradiation.  相似文献   

4.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

5.
Thin films of lithium cobalt oxide were deposited on Pt or Pt/Ti/quartz glass substrates by radio frequency (RF) magnetron sputtering at the substrate temperatures from room temperature to 500 °C. As the substrate temperature increased, the film structure changed from amorphous structure to crystallinity with a strong (003) texture as characterized by X-ray diffraction. The surface morphology and cross-section were observed using scanning electron microscopy. It was found that the films tended to crack at a high substrate temperature. Charge-discharge tests of these films were conducted and compared. The different electrochemical characteristics of these films were attributed to the modified crystallography, morphology, and thermal stress. The LiCoO2 film deposited at 400 °C showed a well-defined 4.0 V voltage plateau on charge and a 3.9 V plateau on discharge, and delivered 54.5 μAh/cm2 μm at the first discharge capacity, with good cycling performance, giving evidence that such films could be used as the thin film cathodes for lithium microbatteries.  相似文献   

6.
We modify the electrical properties of polyimide (PI) films by irradiation with 80 keV Xe ions. The surface resistivity of irradiated PI film at room temperature decreases remarkably from 1.2 × 1014 Ω/□ for virgin PI film to 3.15 × 106 Ω/□ for PI film irradiated by 5.0 × 1016 ions/cm2, and the temperature dependence of the resistivity of the treated films is well-fit using Mott's Equation. The irradiated PI film structure is studied using Raman spectroscopy, X-ray diffraction, and Rutherford Backscattering Spectrometry. The concentration of O in the irradiated layer decreases with increasing fluence, while the variation of N concentration is negligible. Graphite-like carbon-rich phases are created in the irradiated layers, leading to the modification of the electrical properties.  相似文献   

7.
Nanocrystalline samarium doped ceria electrolyte [Ce0.9Sm0.1O1.95] was synthesized by citrate gel combustion technique involving mixtures of cerium nitrate oxidizer (O) and citric acid fuel (F) taken in the ratio of O/F = 1. The as-combusted precursors were calcined at 700 °C/2 h to obtain fully crystalline ceria nano particles. It was further made into cylindrical pellets by compaction and sintered at 1200 °C with different soaking periods of 2, 4 and 6 h. The sintered ceria was characterized for the microstructures, electrical conductivity, thermal conductivity and thermal diffusivity properties. In addition, the combustion derived ceria powder was also analysed for the crystallinity, BET surface area, particle size and powder morphology. Sintered ceria samples attained nearly 98% of the theoretical density at 1200 °C/6 h. The sintered microstructures exhibit dense ceria grains of size less than 500 nm. The electrical conductivity measurements showed the conductivity value of the order of 10−2 S cm−1 at 600 °C with activation energy of 0.84 eV between the temperatures 100 and 650 °C for ceria samples sintered at 1200 °C for 6 h. The room temperature thermal diffusivity and thermal conductivity values were determined as 0.5 × 10−6 m2 s−1 and 1.2 W m−1 K−1, respectively.  相似文献   

8.
This study investigates the temperature dependence of zinc oxide (ZnO) grown on polyestersulfone (PES) flexible substrates using the dual plasma-enhanced metal–organic chemical vapor deposition (DPEMOCVD) system. The proposed method uses a direct voltage (DC) and radio-frequency (RF) plasma system. The group-VI precursor, oxygen (O2), can be completely ionized by the DC plasma system. The effect of optimal DC plasma power on ZnO thin films is thoroughly investigated using X-ray diffraction (XRD). The experimental results indicate that the crystalline structure and optical and electrical properties of ZnO thin films grown on PES substrates are dependent on the deposition temperature. The optimum deposition temperature for ZnO thin films deposited on PES substrates is 185 °C, whereas the DC and RF plasma power is 1.8 W and 350 W, respectively. Additionally, the wettability characteristic regarding the UV irradiation time was assessed by measuring the water contact angle. Under the UV irradiation for 60 min, the ZnO film grown at 185 °C represents a low contact angle of 5°, which approaches to a superhydrophilic surface.  相似文献   

9.
The corrosion behaviour of several metals and metal alloys (copper, nickel, AISI 1018 steel, brass, Inconel 600) exposed to a typical ionic liquid, the 1-butyl-3-methyl-imidazolium bis-(trifluoromethanesulfonyl) imide, ([C4mim][Tf2N]), has been investigated by electrochemical and weight-loss methods. Corrosion current densities have been determined by extrapolation from Tafel plots and by polarization resistance measurements and 48 h immersion tests were performed at 150, 250, 275 and 325 °C. Room temperature results show low corrosion current densities (0.1-1.2 μA/cm2) for all the metals and alloys investigated. At 70 °C, the corrosion current for copper dramatically increases showing a strongly dependence on temperature. At 150 °C copper shows significant weight-loss while nickel, AISI 1018, brass and Inconel do not. At higher temperatures (?275 °C), the copper sample crumbles and localized corrosion occurs for the other metals and alloys.  相似文献   

10.
The abnormal growth of individual (1 0 0) oriented grains is monitored by the in situ electron backscatter diffraction technique for more than 24 h at three different annealing temperatures (90 °C, 104 °C and 118 °C) in 1-5 μm thick Cu films on polyimide substrates. The (1 0 0) grain growth velocity increases with higher film thickness and annealing temperature, as suggested by an earlier model by Thompson and Carel. As a result, the final (1 0 0) texture fraction becomes more dominant for higher annealing temperatures and larger film thicknesses. The Thompson-Carel model, however, predicts that the (1 1 1) grains will preferably grow at temperatures up to 118 °C. Our calculations of the driving forces revealed that in addition to minimization of the strain energy (due to the thermal mismatch between film and substrate) and of the surface energy, the energy stored in the dislocations plays a decisive role in grain growth. Our observations can be understood by the notion that initially available (1 0 0) grain nuclei start to grow very rapidly, due to dislocation annihilation, and thus “overrun” the (1 1 1) grains in size.  相似文献   

11.
Cobalt ferrite CoFe2O4 films were fabricated on SiO2/Si(1 0 0) by the sol-gel method. Films crystallized at/above 600 °C are stoichiometric as expected. With increase of the annealing temperature from 600 °C to 750 °C, the columnar grain size of CoFe2O4 film increases from 13 nm to 50 nm, resulting in surface roughness increasing from 0.46 nm to 2.55 nm. Magnetic hysteresis loops in both in-plane and out-of-plane directions, at different annealing temperatures, indicate that the films annealed at 750 °C exhibit obvious perpendicular magnetic anisotropy. Simultaneously, with the annealing temperature increasing from 600 °C to 750 °C, the out of plane coercivity increases from 1 kOe to 2.4 kOe and the corresponding saturation magnetization increases from 200 emu/cm3 to 283 emu/cm3. In addition, all crystallized films exhibit cluster-like structured magnetic domains.  相似文献   

12.
Al ions with ion energy of 120 keV are implanted into Fe under ion current density of 3.18 μA/cm2 to implantation doses of 5 × 1016 and 1 × 1017 ions/cm2 at room temperature and elevated temperatures of 250 and 500 °C, respectively. At 250 °C, the distribution depth of implanted Al reaches 160 nm with a peak concentration of 6 at.% at the dose of 5 × 1016 ions/cm2, and 180 nm with 10 at.% at 1 × 1017 ions/cm2, analyzed by Rutherford backscattering spectroscopy, respectively. At 500 °C, the implantation depth is 200 nm and the maximum concentration of Al is 10 at.% at the dose of 1 × 1017 ions/cm2. With 5 × 1016 ions/cm2, the intermetallics Al13Fe4 is formed in the Fe samples at 500 °C, revealed by X-ray diffraction. With 1 × 1017 ions/cm2, the phase is also detected at 250 °C. The concentration-depth profiles of implanted Al in Fe samples at the room temperature, 250 °C and 500 °C are calculated by a mass transfer model that is built based on the transport of ions in matter and the irradiation enhanced diffusion. The calculated concentration-depth profiles are in reasonable agreement with those obtained from the experiments.  相似文献   

13.
Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 °C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 °C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency (η) of 1.26% under AM 1.5G illumination at 100 mW/cm2.  相似文献   

14.
Ultrafine/Nanocrystalline W-Cu composite powders with various copper contents (30, 40 and 50 wt.%) have been synthesized by sol-spray drying and a subsequent hydrogen reduction process. The powders were consolidated by direct sintering at temperatures between 1150 and 1260 °C for 90 min. The powder characteristics and sintering behavior, as well as thermal conductivity of the sintered alloys were investigated. The results show that the synthesized powders exist in ultrafine composite particles containing numerous nanosized particles, and the composition distributed very homogeneously. As the copper contents increase, the grain size of the powders decreases. The subsequent sintered parts show nearly full density with the relative density more than 99% at the temperature of 1250 °C. The sintered parts have very fine tungsten grains embedded in a bulk matrix. With increased copper contents, the tungsten grain size decreases and the microstructural homogeneity of the sintered alloys improves further. The thermal conductivity properties, while a little lower than that of the theoretical value, depend on the copper contents.  相似文献   

15.
Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 °C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li+ diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 × 10−9 cm2/s.  相似文献   

16.
A two-stage hydrogen-reduction/sintering procedure was used to synthesize W–15 wt%Cu nano-composite tablets. Hydrogen-reduction was carried out at 600, 650, 700 and 750 °C for 15–90 min and sintering was performed at 1100, 1150, 1200 and 1250 °C for 60 min. Morphology and grain size of the products were rigorously investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD) and nano-particle Zeta-sizer. Maximum consolidation of the nano-composite product was achieved at 1200 °C. Hydrogen-reduction at 700 °C for 90 min showed an average particle size of ∼72.9 nm. Total reduction was achieved at higher temperatures and longer times. The mixture had a homogeneous structure with 16.1 ± 0.1 g/cm3 density when sintered at 1200 °C for 60 min.  相似文献   

17.
A novel method of ZnO nanorods growth is presented based on low temperature (300 °C) air annealing of ZnO film while applying an electric field (∼ 10 V/cm) parallel to the film. The films were deposited on glass substrates using a filtered vacuum arc deposition system equipped with a Zn cathode, at an arc current of 160 A, oxygen pressure of 3.2 mTorr, and deposition time of 30 s. Cu tape electrodes were applied on each end of the coated sample, and used to apply the electric field. The samples were annealed in a quartz furnace at 200, 300, 400 °C for 20 or 60 min. Each sample surface was examined using a Scanning Electron Microscope (SEM) and a High Resolution SEM (HRSEM) to study its micro- and nano-structure. The film crystallographic structure was studied using X-ray diffractometry (XRD). ZnO rods with lengths of ∼ 3 μm were observed on the samples annealed at 300 °C for 20 min with an electric field of ∼ 103 V/m, while separated conical forms with lengths of ∼ 0.5 μm and base width of ∼ 150 nm were observed after annealing under the same conditions but without any electric field. The rod growth rate and area density were ∼ 2.0-2.5 nm/s, and ∼ 3 × 107 cm− 2, respectively.  相似文献   

18.
Stainless steel can be used as interconnect plates in solid oxide fuel cells (SOFCs) below operating temperature of 800 °C. Unwanted reactions between the alloy and other SOFC components decrease the efficiency of these energy convertors. One approach to improving interconnect properties is to apply a surface coating to them. In this study, AISI 430 ferritic stainless steel interconnect is coated in a cobalt-base pack mixture using the pack cementation method. Isothermal oxidation, cyclic oxidation and oxidation at different temperatures (400-900 °C) are applied to evaluate the role of the coating layer during oxidation. Area-specific resistance (ASR) of the coated substrates has also been tested as a function of temperature and time. The surface morphology was examined by SEM, the chemical composition and structure of oxide formed were analysed by EDS and XRD. Results showed that the coating layer transforms into MnCo2O4, CoCr2O4 and CoFe2O4 spinels during isothermal oxidation. This scale is protective and acts as an effective barrier against chromium migration into the outer oxide layer and prevents weight gain. The mass gain and spallation indicated that the formation of spinel significantly improved the high temperature oxidation. These spinels also cause a reduction in ASR for coated substrates (9.7 mΩcm2) as compared to uncoated substrates (36.1 mΩcm2) after 200 h of isothermal oxidation at 800 °C.  相似文献   

19.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

20.
Heavy-ion implantation is a powerful tool to conduct atomic injection and to create buried nanoparticles with good depth-controllability in dielectric material. Metal nanoparticle composites, especially, the metal ion implanted insulators (e.g. SiO2) with patterned nanoparticles are promising for plasmonic applications, possessing an enhanced surface plasmon resonance and nonlinear optical property as compared with randomly implanted specimens [1]. Contact masked implantation is one practical method for patterned implantation, which has advantage of reliable 2D nanoparticle spatial controllability without any abreactions. In this experiment, the Si stencil mask was made from top Si layer of SOI wafer by using e-beam lithography and plasma deep etching. The mask can be fabricated with required aspect ratio (from 3 up to 100), fine pore shape, surface flatness, and mechanical hardness. 60 keV Cu ion irradiation damage test shows that, below the fluence of 1 × 1017 ions/cm2, Si stencil mask can keep dimensional stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号