首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns.
Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.  相似文献   

2.
Confined impinging jet reactor(CIJR) is a typical process intensification device used in the chemical industry.In this study, two dimensional Particle Image Velocimetry(PIV) and Large Eddy Simulation(LES) method were used to investigate the flow field in a CIJR with jets of diameter 3 mm under highly turbulent condition.The results showed LES can predict the velocity and Turbulence Kinetic Energy(TKE) distributions in the reactor well by comparing with the PIV results.In the CIJR, the stagnation point fluctuates with the turbulence, and its instantaneous position accords with the normal distribution.Three methods, including s–t representation, Lumley–Newman triangle and A–G representation, were used to compare the turbulence anisotropy in the mixing chamber.It was found that the anisotropy in the impinging area and at the edge of impinging jet was strong and the maximum deviation was up to 40%.The results from 2 DPIV would lead to an overestimation of the turbulent kinetic energy as much as 20% to 30% than the results from the three dimensional numerical simulation.  相似文献   

3.
This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secondary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the instantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential velocities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are obtained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.  相似文献   

4.
一串上升气泡周围流体的湍动特性(英文)   总被引:1,自引:0,他引:1  
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.  相似文献   

5.
It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative investigation of this subject. By combining the computational fluid dynamics (CFD) with the mass transfer equation, a theoretical model is proposed for predicting the details of velocity and concentration distributions as well as the tray efficiency of distillation tray column. Using the proposed model, four different cases corresponding to different assumptions of liquid and vapor flowing condition for a distillation tray column were investigated. In Case I, the distributions of velocity and concentration of the incoming liquid from the downcomer and the uprising vapor from the underneath tray spacing are uniform. In Case Ⅱ, the distribution of the incoming liquid is non-uniform but the uprising vapor is uniform. In Case Ⅲ, the distribution of the incoming liquid is uniform but the uprising vapor is non-uniform.In Case IV, the distributions of both the incoming liquid and the uprising vapor are non-uniform. The details of velocity and concentration distributions on a multiple sieve tray distillation column in four different cases were simulated using the proposed model. It is found that the shape of the simulated concentration profiles of vapor and the liquid is quite different from case to case. The computed results also show that the tray efficiency is highly reduced by the maldistribution of velocity and concentration of the incoming liquid and uprising vapor. The tray efficiency for Case Ⅰ is higher than Case Ⅱ or Case Ⅲ, and that for Case Ⅳis the lowest. It also reveals that the accumulated effect of maldistribution becomes more pronounced when the number of column trays increased. The present study demonstrates that the use of computational method to predict the mass transfer efficiency for the tray column, especially for the large one, is feasible.  相似文献   

6.
For the design and optimization of a tubular gas–liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup process of liquid jet column was analyzed by high-speed camera,then the droplet size and velocity distribution of atomized droplets were measured by Phase-Doppler anemometry (PDA).The hydrodynamic characteristics of gas flow in tubular gas–liquid atomization mixer were analyzed by computational fluid dynamics (CFD) numerical simulation.The results indicate that the liquid flow rate has little effect on the atomization droplet size and atomization pressure drop,and the gas flow rate is the main influence parameter.Under all experimental gas flow conditions,the liquid jet column undergoes a primary breakup process,forming larger liquid blocks and droplets.When the gas flow rate (Q_g) is less than 127 m~3·h~(-1),the secondary breakup of large liquid blocks and droplets does not occur in venturi throat region.The Sauter mean diameter (SMD) of droplets measured at the outlet is more than 140μm,and the distribution is uneven.When Q_g127 m~3·h~(-1),the large liquid blocks and droplets have secondary breakup process at the throat region.The SMD of droplets measured at the outlet is less than 140μm,and the distribution is uniform.When 127Q_g162 m~3·h~(-1),the secondary breakup mode of droplets is bag breakup or pouch breakup.When 181Q_g216 m~3·h~(-1),the secondary breakup mode of droplets is shear breakup or catastrophic breakup.In order to ensure efficient atomization and mixing,the throat gas velocity of the tubular atomization mixer should be designed to be about 51 m·s~(-1)under the lowest operating flow rate.The pressure drop of the tubular atomization mixer increases linearly with the square of gas velocity,and the resistance coefficient is about 2.55 in single-phase flow condition and 2.73 in gas–liquid atomization condition.  相似文献   

7.
液膜性质的小尺度研究   总被引:2,自引:0,他引:2       下载免费PDF全文
Structured packing is a good candidate for CO2 capture process because of its higher mass transfer efficiency and lower pressure drop.Now,the challenging problem of CO2 capture and storage demands more and more efficiency equipment.The aim of the present study is to investigate the liquid film characteristics under counter current gas phase and throw some insight into the enhancing mechanism of mass transfer performance in structured packing.A high speed digital camera,non-intrusive measurement technique,was used.Water and air were working fluids.Experiments were carried out for different gas/liquid flow rates and different inclination angles.The time-average and instantaneous film widths for each set of flow parameters were calculated.It is shown that the effects of gas phase could be neglected for lower flow rate,and then,become more pronounced at higher flow rate.According to instantaneous film width,three different stages can be distinguished.One is the constant width of liquid film.The second is the slight decrease of film width and the smooth surface.This kind of character will lead to less interfacial area and deteriorate the packing mass transfer performance.For the third stage,the variation of film width shows clearly chaotic behavior.The prediction model was also developed in present work.The predicted and experimental results are in good agreement.  相似文献   

8.
规整填料内单相流的LDV实验研究   总被引:1,自引:0,他引:1  
To date, many models have been developed to calculate the flow field in the structured packing by the computational fluid dynamics (CFD) technique, but little experimental work has been carried out to serve the vali-dation of flow simulation. In this work, the velocity profiles of single-phase flow in structured packing are measured at the Reynolds numbers of 20.0, 55.7 and 520.1, using the laser Doppler velocimetry (LDV). The time-averaged and instantaneous velocities of three components are obtained simultaneously. The CFD simulation is also carried out to numerically predict the velocity distribution within the structured packing. Comparison shows that the flow pattern, velocity distribution and turbulent kinetic energy (for turbulent flow) on the horizontal plane predicted by CFD simulation are in good agreement with the LDV measured data. The values of the x-and z-velocity components are quantitatively well predicted over the plane in the center of the packing, but the predicted y-component is sig-nificantly smaller than the experimental data. It can be concluded that experimental measurement is important for further improvement of CFD model.  相似文献   

9.
The concentration and orientation of fiber in a turbulent T-shaped branching channel flow are investigated numerically. The Reynolds averaged Navier-Stokes equations together with the Reynolds stress turbulent model are solved for the mean flow field and the turbulent kinetic energy. The fluctuating velocities of the fluid are assumed as a random variable with Gaussian distribution whose variance is related to the turbulent kinetic energy. The slender-body theory is used to simulate the fiber motion based on the known mean and fluctuating velocities of the fluid. The results show that at low Reynolds number, fiber concentration is high in the flow separation regions, and fiber orientation throughout the channel is widely distributed with a slight preference of aligning along the horizontal axis. With increasing of Re, the high concentration region disappears, and fiber orientation becomes ho- mogeneous without any preferred direction. At high Reynolds number, fiber concentration increases gradually along the flow direction. The differences in the distribution of concentration and orientation between different fiber aspect ratio are evident only at low Re. Both Re and fiber aspect ratio have small effect on the variance of orientation angle.  相似文献   

10.
The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter (db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg, Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid loading for the maximum local εg and Vb together with the minimum local db was 0.16 × 10-3 m3, corresponding to a solid volume fraction, εS = 2.5%.  相似文献   

11.
《分离科学与技术》2012,47(6):813-819
The flow patterns in the annular region of a 50 mm annular centrifugal extractor (ACE) were studied using phase particle image velocimetry (PIV), by which the distributions of radial velocity, axial velocity, vorticity, turbulent kinetic energy (TKE), and micromixing time of a fluid under different rotating Reynolds numbers were investigated. In the center of the annular region, both the radial and axial velocities of the fluid are close to zero, regardless of the rotating Reynolds number changes. The TKE of the fluid along the radial direction is small at center and large on the edge. The results show that the mixing process mainly occurs at the region near the outer cylinder’s sidewall, and the mixing time in this region is less than that in the internal annular region. Besides, the whole mixing efficiency is proportional to the rotational speed when the speed is below a certain level, and then gradually reaches a plateau when the speed is further increased.  相似文献   

12.
Turbulent mixing in the confined swirling flow of a multi‐inlet vortex reactor (MIVR) was investigated using planar laser induced fluorescence (PLIF). The investigated Reynolds numbers based on the bulk inlet velocity ranged from 3290 to 8225, and the Schmidt number of the passive scalar was 1250. Measurements were taken in the MIVR at three different heights (¼, ½, and ¾ planes). The mixing characteristics and performance of the MIVR were investigated using instantaneous PLIF fields and pointwise statistics such as mixture fraction mean, variance, and one‐point concentration probability density function. It was found that the scalar is stretched along velocity streamlines, forming a spiral mixing pattern in the free‐vortex region. In the forced‐vortex region, mixing intensifies as the turbulent fluctuations increase significantly there. The mixing mechanisms in the MIVR were revealed by identifying specific segregation zones. At Re = 8225 the mixing in the free‐vortex region was dominated by both large‐scale structures and turbulent diffusion, while in the forced‐vortex region mixing is dominated by turbulent diffusion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2409–2419, 2017  相似文献   

13.
Results of an experimental study of the spatial structure of a reacting flow during combustion of a propane–air mixture in a turbulent swirling jet escaping into atmospheric air are presented. The fuel-to-air equivalence ratio is φ = 0.7, and the Reynolds number of the jet is Re = 5 · 103. The time-averaged spatial distributions of velocity, local density, and concentrations of the main species of the gas mixture are measured in low-swirl and high-swirl flows. In both cases, the flame front is stabilized in the internal mixing layer formed by the axial region of jet retardation, where hot combustion products are concentrated. In a high-swirl flow, the temperature distributions in the cross section y/d = 0.5 show that the region with the maximum temperature of the gas is located at the periphery of the central recirculation zone. Moreover, in the case of a high-swirl flow, there exists a recirculation zone at the axis, and the CO2 concentration is twice higher than in a low-swirl jet. The opposite situation is observed for O2.  相似文献   

14.
循环射流混合槽(CJT)作为一种过程强化设备可以提高湍流的混合效率及反应选择性。为进一步提高其工业应用价值,对循环射流混合槽流场的传热能力进行分析并对其射流层数进行结构优化。在恒壁温的条件下,采用SST k-ω模型分析循环射流混合槽流场区域的非稳态流动传热特性。在充分湍流状态下研究了Re=3260~16 303,射流层数M=5~9对循环射流混合槽壁面对流传热特性及流场传热特性的影响。结果表明,M=9时对流换热系数的变异系数Ch随Re增加而减少,壁面传热均匀性提高2.8%~19.3%;流场与温度场协同性随Re增加而增加,Re=16 303时的协同角为75.5o比Re=3260时减小约0.5°。Re=9782时Ch随M增加而降低,壁面传热均匀性提高2.7%~16.3%;速度矢量与温度梯度协同性随M增加而减小,M=9时全局协同性相较于M=5时降低了6.1%。当M=7时中心混合区与射流混合区的场协同角均在73°~74°之间,两区域流场间热量传递能力匹配程度较好;当M<7时中心混合区的协同性优于射流混合区,当M>7时射流混合区协同性优于中心混合区。研究Re及射流层数M对循环射流混合槽热量吸收和传递性能的影响,发现Re的变化对循环射流混合槽吸热量的影响大于射流层数M的变化。  相似文献   

15.
Mixing behavior of the two phase air-water turbulent flow in a jet bubble column is examined. The time evolution of the mixing behavior of a liquid tracer in a turbulent air-water flow within a jet bubble column is predicted using a model based on the fundamental governing equations of fluid motion. The predictions of the model are compared with experimental measurements. Measured residence time distributions (RTD) of the liquid tracer within the cone agree well with the predicted values given by the model. For the range of parameters considered in the study, lack of radial mixing and large axial mixing are evident within the cone of the jet bubble column. Use of fundamental mathematical models for the study of hydrodynamics in a two-phase conventional bubble column has been reported earlier (Torvik, 1990; Jakobsen et al., 1993). The present paper extends the use of such models to predict the mixing characteristics in a jet bubble column.  相似文献   

16.
下喷自吸环流反应器内液相局部流动特性   总被引:1,自引:0,他引:1  
对下喷自吸环流反应器内气-液两相流和气-液-固三相流体系的液相局部流动物性进行了深入的实验研究。采用改进皮托管法和线-线双探针电导法分别对液相瞬时速度和液含率进行了微机在线测量,并借助湍流统计理论对液相局部流动参数和局部液含率进行了统计分析和处理,着重讨论了喷射液体流量和固体粒子加入量分别对喷射有效区和导流筒内管流区液相局部流动参数和液含率的影响。  相似文献   

17.
平面激光诱导荧光技术用于快速液液混合过程温度场测量   总被引:3,自引:0,他引:3  
利用平面激光诱导荧光技术(Planar Laser Induced Fluorescence,PLIF)研究了毫米尺度流道内,两股不同温度液膜的错流混合过程. 根据激光诱导作用下荧光强度的温度依赖特性,可视化地揭示了液-液错流混合区的二维温度场分布. 采用温度离析度(Intensity of Segregation,IOS)的概念定量描述了液-液混合的发展过程,分析了不同射流动量比对混合过程的影响. 计算了该过程混合区水的总传热系数,与纯湍流作用的总传热系数比较发现,两液膜撞击射流对传热有强化作用,射流动量比是影响其总传热系数的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号