首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal ions and their interaction with the amyloid beta (Aβ) peptide might be key elements in the development of Alzheimer's disease. In this work the effect of CuII on the aggregation of Aβ is explored on a timescale from milliseconds to days, both at physiological pH and under mildly acidic conditions, by using stopped‐flow kinetic measurements (fluorescence and light‐scattering), 1H NMR relaxation and ThT fluorescence. A minimal reaction model that relates the initial CuII binding and Aβ folding with downstream aggregation is presented. We demonstrate that a highly aggregation prone Aβ ? CuII species is formed on the sub‐second timescale at mildly acidic pH. This observation might be central to the molecular origin of the known detrimental effect of acidosis in Alzheimer's disease.  相似文献   

2.
Copper binding to α‐synuclein (aS) and to amyloid‐β (Ab) has been connected to Parkinson's and Alzheimer's disease (AD), respectively, because Cu ions can modulate the peptide aggregation, and these Cu ? peptide complexes can catalyse the production of reactive oxygen species (ROS). In a significant proportion of AD brains, aggregation of aS and Ab has been detected, and it was proposed that Ab and aS interact with each other. Thus, we investigated the potential interactions of Ab and aS through their binding of copper(I) and copper(II). Additionally, β‐synuclein (bS) was investigated, due to its additional methionine residue, a potential CuI ligand. We found that: 1) the peptides containing the Cu‐binding domains Ab1–16, aS1–15 and bS1–15 have similar affinities towards CuII and towards CuI, with Ab1–16 being slightly stronger, 2) in the case of CuI, the additional Met residue in bS1–15 increased the affinity slightly, 3) the exchange of CuI/II between the two peptides is rapid (≤ms), 4) a/bS1–15 and Ab1–16 form a heterodimeric complex with CuII, 5) CuI probably promotes a transient ternary complex, 6) the different CuI/II coordination of Ab1–16, aS1–15 and bS1–15 impacts the capacity to produce ROS and to oxidise catechol, and 7) when Ab1–16, aS1–15 and Cu are present, the ROS production more closely resembles that by Ab1–16. The work gives insights into the coordination chemistry of these related peptides, and the relevance of coordination differences, the ternary complex and ROS production are discussed.  相似文献   

3.
The metal ions copper, zinc and iron have been shown to be involved in Alzheimer's disease (AD). Cu, Zn and Fe ions are proposed to be implicated in two key steps of AD pathology: 1) aggregation of the peptide amyloid‐β (Aβ), and 2) production of reactive oxygen species (ROS) induced by Aβ. There is compelling evidence that Cu and Zn bind directly to Aβ in AD. This formation of Cu/Zn–Aβ complexes is thought to be aberrant as they have been detected only in AD, but not under healthy conditions. In this context, the understanding of how these metal ions interact with Aβ, their influence on structure and oligomerization become an important issue for AD. Moreover, the mechanism of ROS production by Cu–Aβ in relation to its aggregations state, as well as the metal‐transfer reaction from and to Aβ are crucial in order to understand why Aβ oligomers are highly toxic and why Aβ seems to bind Cu and Zn only in AD.  相似文献   

4.
Truncated and mutated amyloid‐β (Aβ) peptides are models for systematic study—in homogeneous preparations—of the molecular origins of metal ion effects on Aβ aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis‐histidine imidazole coordination of CuII in fibrils of the nonapetide acetyl‐Aβ(13–21)H14A has been determined by powder 14N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a CuII‐bis‐cis‐imidazole complex of known structure. The revealed bis‐cis coordination mode, and the mutual orientation of the imidazole rings, for CuII in Ac‐Aβ(13–21)H14A fibrils are consistent with the proposed β‐sheet structural model and pairwise peptide interaction with CuII, with an alternating [‐metal‐vacancy‐]n pattern, along the N‐terminal edge. Metal coordination does not significantly distort the intra‐β‐strand peptide interactions, which provides a possible explanation for the acceleration of Ac‐Aβ(13–21)H14A fibrillization by CuII, through stabilization of the associated state and low‐reorganization integration of β‐strand peptide pair precursors.  相似文献   

5.
The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-β peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aβ sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu–Aβ4−x] and [Cu–Aβ1−x] complexes toward dopamine and other catechols. The results show that the CuII–ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII–Aβ–catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu–Aβ4−x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.  相似文献   

6.
Metal‐ion dysregulation and oxidative stress have been linked to the progressive neurological decline associated with neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. Herein we report the synthesis and chelating, antioxidant, and in vitro neuroprotective activities of a novel derivative of glutathione, GS(HQ)H, endowed with an 8‐hydroxyquinoline group as a metal‐chelating moiety. In vitro results showed that GS(HQ)H may be stable enough to be absorbed unmodified and arrive intact to the blood–brain barrier, that it may be able to remove CuII and ZnII from the Aβ peptide without causing any copper or zinc depletion in vivo, and that it protects SHSY‐5Y human neuroblastoma cells against H2O2‐ and 6‐OHDA‐induced damage. Together, these findings suggest that GS(HQ)H could be a potential neuroprotective agent for the treatment of neurodegenerative diseases in which a lack of metal homeostasis has been reported as a key factor.  相似文献   

7.
The uncontrolled redox activity of metal ions, especially copper, in the brains of patients with Alzheimer's disease (AD) should be considered the origin of intense oxidative damage to neurons in the AD brain. To obtain low‐molecular‐weight copper chelators that act as tetradentate ligands, we designed new compounds based on an 8‐aminoquinoline motif with a lateral chain attached at the 2‐position of the aromatic ring. Some of these new ligands, termed TDMQ for TetraDentate MonoQuinolines, are specific for copper chelation. Full characterization of these ligands is reported, as well as their affinities for CuII, and their capacities to inhibit oxidative stress induced by copper–amyloids activated by a reductant. Such metal ligands can be considered as potential anti‐AD agents, as they should be able to regulate the homeostasis of copper in brain tissue.  相似文献   

8.
Condensation products of L‐histidine with the 3‐oxoenolethers diethyl‐ethoxymethylene‐malonate ( 1 ) and ethyl‐ethoxymethylene‐cyanoacetate ( 2 ) react with copper(II) as di‐anionic ligands to give neutral 1:1 complexes Cu‐ His1 and Cu‐ His2 . Both complexes crystallize as oligonuclear units, even from strongly donating solvents like N‐methylimidazole (Meim) (Cu‐ His1 ) and pyridine (Cu‐ His2 ). X‐ray structure analyses show supramolecular structures, formed of two (Cu‐ His1 ) or four (Cu‐ His2 ) formula units of the complex, which arrange to macrocycles by means of intermolecular coordination of the imidazole‐N. Strong H‐bridges result in a face‐to‐face orientation of the hydrophilic sites of two great rings. ESI‐MS investigations in pyridine solution give evidence for the existence of dimeric, tetrameric and – in case of Cu‐ His2 – trimeric units, besides the monomeric adducts with one pyridine. In contrast to the dimeric or tetrameric (“cubane‐like”) copper(II) complexes of amino alcohols and their β‐ketoenamines, the complexes Cu‐ His1 and Cu‐ His2 show no significant spin coupling from room temperature down to 4 K. The complexes Cu‐ His1 and Cu‐ His2 give no electrochemically reversible CuII/I reduction in pyridine. However, the isolation of a stable diamagnetic copper(I) complex of the methylester derivative, CuI‐ HisMe1 , supports the assumption, that similar histidine‐derived copper complexes should display reversible redox behaviour and catalytic activity in reactions with O2.  相似文献   

9.
The amyloid fibrils of amyloid β protein (Aβ) from Alzheimer's disease are likely to show the cytotoxicity, depending on their morphology. The relationship between the nucleation kinetics of the Aβ fibrils and their morphology has been investigated. From the perspective of a crystallization technique assuming primary/secondary nucleation steps and an elongation step, the secondary nucleation rate B [# m?3 s?1], was experimentally and coarsely determined by using total internal reflection fluorescence microscopy combined with thioflavin T. In an aqueous solution, linear and rigid fibrils were formed with a relatively smaller B value ((2.83 ± 0.55) × 105 # m?3 s?1), whereas spherulitic amyloid assemblies were formed in the presence of negatively charged liposome including oxidized lipids, with a larger B value ((7.65 ± 0.47) × 105 # m?3 s?1). Those findings should lead to a better understanding of the mechanism for the formation of fibrils and senile plaques in Alzheimer's disease. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
Copper (Cu) has been implicated in the progression of Alzheimer’s disease (AD), and aggregation of Cu and amyloid β peptide (Aβ) are considered key pathological features of AD. Metal chelators are considered to be potential therapeutic agents for AD because of their capacity to reduce metal ion-induced Aβ aggregation through the regulation of metal ion distribution. Here, we used phage display technology to screen, synthesize, and evaluate a novel Cu(II)-binding peptide that specifically blocked Cu-triggered Aβ aggregation. The Cu(II)-binding peptide (S-A-Q-I-A-P-H, PCu) identified from the phage display heptapeptide library was used to explore the mechanism of PCu inhibition of Cu2+-mediated Aβ aggregation and Aβ production. In vitro experiments revealed that PCu directly inhibited Cu2+-mediated Aβ aggregation and regulated copper levels to reduce biological toxicity. Furthermore, PCu reduced the production of Aβ by inhibiting Cu2+-induced BACE1 expression and improving Cu(II)-mediated cell oxidative damage. Cell culture experiments further demonstrated that PCu had relatively low toxicity. This Cu(II)-binding peptide that we have identified using phage display technology provides a potential therapeutic approach to prevent or treat AD.  相似文献   

11.
Amyloid-β (Aβ) is a natively unfolded peptide found in all Alzheimer's disease patients as the major component of fibrillar plaques, which are recognized as an important pathological hallmark in Alzheimer's disease. The binding of copper to Aβ increases its neurotoxicity, as Cu2+ causes Aβ to become redox active and decreases the lag time associated with Aβ aggregation. In addition, the pH is a major factor that influences both the Aβ aggregation rates and Cu2+ binding. Hamiltonian replica exchange molecular dynamics (H-REMD) simulations enable atomistic insights into the effects of pH and Cu2+ complexation on the structure and dynamics of Aβ. To study the Aβ1–42/Cu2+ complex, we have developed new force-field parameters for the divalent copper ion ligated by the two histidine residues, His6 and His13, as well as the amine and carbonyl groups of Asp1, in a distorted square-planar geometry. Our comparative simulations reveal that both Cu2+ binding and a low pH-mimicking acidosis, linked to inflammatory processes in vivo, accelerate the formation of β-strands in Aβ1–42 and lead to the stabilization of salt bridges, previously shown to promote Aβ aggregation. The results suggest that Cu2+ binding and mild acidic conditions can shift the conformational equilibrium towards aggregation-prone conformers for the monomeric Aβ.  相似文献   

12.
Aggregation of the amyloid‐β peptide (Aβ) into fibrillar structures is a hallmark of Alzheimer's disease. Thus, preventing self‐assembly of the Aβ peptide is an attractive therapeutic strategy. Here, we used experimental techniques and atomistic simulations to investigate the influence of carnosine, a dipeptide naturally occurring in the brain, on Aβ aggregation. Scanning force microscopy, circular dichroism and thioflavin T fluorescence experiments showed that carnosine does not modify the conformational features of Aβ42 but nonetheless inhibits amyloid growth. Molecular dynamics (MD) simulations indicated that carnosine interacts transiently with monomeric Aβ42 by salt bridges with charged side chains, and van der Waals contacts with residues in and around the central hydrophobic cluster (17LVFFA21). NMR experiments on the nonaggregative fragment Aβ12–28 did not evidence specific intermolecular interactions between the peptide and carnosine, in agreement with MD simulations. However, a close inspection of the spectra revealed that carnosine interferes with the local propensity of the peptide to form backbone hydrogen bonds close to the central hydrophobic cluster (residues E22, S26 and N27). Finally, MD simulations of aggregation‐prone Aβ heptapeptide segments show that carnosine reduces the propensity to form intermolecular backbone hydrogen bonds in the region 18–24. Taken together, the experimental and simulation results (cumulative MD sampling of 0.2 ms) suggest that, despite the inability of carnosine to form stable contacts with Aβ, it might block the pathway toward toxic aggregates by perturbing the hydrogen bond network near residues with key roles in fibrillogenesis.  相似文献   

13.
Aggregation of the 42‐residue amyloid β‐protein (Aβ42) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Despite numerous structural studies on Aβ aggregates, the relationship between tertiary structure and toxicity remains unclear. Our proline scanning and solid‐state NMR studies suggested that aggregates both of wild‐type Aβ42 and of E22K‐Aβ42 (one of the mutants related to cerebral amyloid angiopathy) contain two conformers: a major one with a turn at positions 25 and 26, and a minor one with a turn at positions 22 and 23. To identify the toxic conformer, the derivative Aβ42‐lactam(22K–23E), in which the side chains at positions 22 and 23 were covalently linked, was synthesized as a minor conformer surrogate, along with Aβ42‐lactam(25K–26E) as a major conformer surrogate. The Aβ42‐lactam(22K–23E) showed stronger aggregation, neurotoxicity, radical generation, and oligomerization than wild‐type Aβ42, whereas in Aβ42‐lactam(25K–26E) were weak. The transition from the physiological conformation with a turn at positions 25 and 26 to the toxic conformation with a turn at positions 22 and 23 might be a key event in the pathogenesis of AD.  相似文献   

14.
Current methods for Alzheimer's treatment require a three‐component system: metal chelators, antioxidants, and amyloid β (Aβ)‐peptide‐binding scaffolds. We report sialic acid (Sia) hydroxamate as a potential radical scavenger and metal chelator to inhibit Aβ aggregation. A cell viability assay revealed that Sia hydroxamate can protect HeLa and glioblastoma (LN229) cells from oxidative damage induced by the Fenton reaction. Sedimentation and turbidity assays showed profound protection of neuroblastoma SH‐SY5Y cells from metal‐induced Aβ aggregation and neural toxicity.  相似文献   

15.
The electroless copper deposition rate for 6 CuII complexes decreases in the ligand sequence: nitrilotriacetic acid (NTA) > N,N,N′,N′-tetrakis-(2-hydroxypropyl)-ethylenediamine (Quadrol) > glycerol > L(+)-tartrate ~ sucrose > -tartrate. Both CuII complex stability and specific ligand effects were found to influence the Cu deposition process. The specific ligand effects are most obvious in the case of Quadrol (high kinetic activity at a high CuII complex stability), glycerol and sucrose (additional reaction of Cu2O formation by interaction of CuII with ligand). According to the EQCM data for 11 CuII complexes (including data from the former study) the higher kinetic activity is demonstrated by complexes with ligands containing amino groups; this factor is more important for Cu deposition rate than copper complex stability. A potential dependence of the Cu reduction partial current on the electrode potential has been extracted from the EQCM data in the complete electroless plating bath. An increase in CuII reduction rate was found to occur in electroless plating solution for CuII complexes with NTA and Quadrol compared with that in formaldehyde-free solutions. Possible reasons for the acceleration of the partial CuII reduction reaction and the overall process kinetics are discussed using a hypothetical reaction sequence involving intermediate copper oxy-species and active Cu* formation as well as development of the preferred Cu surface structure.  相似文献   

16.
We modified microporous polyamide hollow fibers by acid hydrolysis to amplify the reactive groups and subsequent binding of Cibacron Blue F3GA. Then, we loaded the Cibacron Blue F3GA‐attached hollow fibers with different metal ions (Cu2+, Ni2+, and Co2+) to form the metal chelates. We characterized the hollow fibers by scanning electron microscopy. The effect of pH and initial concentration of human serum albumin (HSA) on the adsorption of HSA to the metal‐chelated hollow fibers were examined in a batch system. Dye‐ and metal‐chelated hollow fibers had a higher HSA adsorption capacity and showed less nonspecific protein adsorption. The nonspecific adsorption of HSA onto the polyamide hollow fibers was 6.0 mg/g. Cibacron Blue F3GA immobilization onto the hollow fibers increased HSA adsorption up to 147 mg/g. Metal‐chelated hollow fibers showed further increases in the adsorption capacity. The maximum adsorption capacities of Co2+‐, Cu2+‐, and Ni2+‐chelated hollow fibers were 195, 226, and 289 mg/g, respectively. The recognition range of metal ions for HSA from human serum followed the order: Ni(II) > Cu(II) > Co(II). A higher HSA adsorption was observed from human serum (324 mg/g). A significant amount of the adsorbed HSA (up to 99%) was eluted for 1 h in the elution medium containing 1.0M sodium thiocyanide (NaSCN) at pH 8.0 and 25 mM ethylenediaminetetraacetic acid at pH 4.9. Repeated adsorption–desorption processes showed that these metal‐chelated polyamide hollow fibers were suitable for HSA adsorption. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3346–3354, 2002  相似文献   

17.
β‐Amyloid (Aβ) aggregation is causally linked to neuronal pathology in Alzheimer's disease; therefore, several small molecules, antibodies, and peptides have been tested as anti‐Aβ agents. We developed two compounds based on the Aβ‐binding domain of transthyretin (TTR): a cyclic peptide cG8 and an engineered protein mTTR, and compared them for therapeutically relevant properties. Both mTTR and cG8 inhibit fibrillogenesis of Aβ, with mTTR inhibiting at a lower concentration than cG8. Both inhibit aggregation of amylin but not of α‐synuclein. They both bind more Aβ aggregates than monomer, and neither disaggregates preformed fibrils. cG8 retained more of its activity in the presence of biological materials and was more resistant to proteolysis than mTTR. We examined the effect of mTTR or cG8 on Aβ binding to human neurons. When mTTR was co‐incubated with Aβ under oligomer‐forming conditions, Aβ morphology was drastically changed and Aβ‐cell deposition significantly decreased. In contrast, cG8 did not affect morphology but decreased the amount of Aβ deposited. These results provide guidance for further evolution of TTR‐mimetic anti‐amyloid agents.  相似文献   

18.
The hydrogenation of methyl acetate (MA) is one of the important key processes for synthesis of ethanol from syngas. This work reports a highly efficient Cu‐ZnO/SBA‐15 catalyst prepared by facile solid‐state grinding method. Both copper and zinc species were encapsulated in SBA‐15 in high dispersion with the presence of organic template. The mixed homogeneity and interaction between copper and zinc species was enhanced as well with the help of organic template, resulting in the formation of Cu+ species in the reduced catalysts. Moreover, TOFCu(0) linearly increased with the Cu+/Cu0 ratio, indicating that a high proportion of Cu+/Cu0 induced by ZnO should be a key prerequisite to achieve favorable hydrogenation performance. It seems that the Cu+ species originated from Cu‐ZnOx species are more active than that from Cu‐O‐Si species in the activation of MA. These results may provide an inspiration in rational design of Cu‐ZnO‐based catalysts for esters hydrogenation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2839–2849, 2017  相似文献   

19.
Amyloid‐β (Aβ) peptide is the major component found in senile plaques of Alzheimer's disease patients. The 42‐residue fragment Aβ(1–42) is proposed to be one of the most pathogenic species therein. Here, the soluble Aβ(1–42) species were analyzed by various liquid‐state NMR methods. Transient formation of a micelle species was observed at the onset of the aggregation kinetics. This micelle is dissolved after approximately one day. Subsequent loss of this species and the formation of protofibrils are proposed to be the route of fibril formation. Consequently, the observed micelle species is suggested to be on an off‐pathway mechanism. Furthermore, characterization of the NMR‐observable soluble species shows that it is a random‐coil‐like entity with low propensities for four β‐strands. These β‐strands correlate with the β‐strand segments observed in Aβ fibrils. This finding indicates that the 3D structure of the fibrils might already be predisposed in the soluble species.  相似文献   

20.
In the present study, PS@α‐Fe2O3 nanocomposites were prepared by chemical microemulsion polymerization approach and the ability of magnetic beads to remove Cu(II) ions from aqueous solutions in a batch media was investigated. Various physico‐chemical parameters such as pH, initial metal ion concentration, temperature, and equilibrium contact time were also studied. Adsorption mechanism of Cu2+ ions onto magnetic polymeric adsorbents has been investigated using Langmuir, Freundlich, Sips and Redlich–Petersen isotherms. The results demonstrated that the PS@α‐Fe2O3 nanocomposite is an effective adsorbent for Cu2+ ions removal. The Sips adsorption isotherm model (R2 > 0.99) was more in consistence with the adsorption isotherm data of Cu(II) ions compared to other models and the maximum adsorbed amount of copper was 34.25 mg/g. The adsorption kinetics well fitted to a pseudo second‐order kinetic model. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that copper adsorption was a spontaneous and exothermic process. POLYM. ENG. SCI., 55:2735–2742, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号