首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ti1-xSixN coating is a promising candidate for wear resistant applications due to their super-hardness and high thermal stability. Here, we explored the structure, mechanical properties and thermal stability of Ti1-xSixN (x?=?0, 0.13, 0.17 and 0.22) coatings deposited by cathodic arc evaporation. Monolithically grown Si-containing Ti1-xSixN coatings, which are Si-solution in TiN for x?=?0.13 and 0.17, reveal a high hardness of 39.4?±?0.67 and 40.6?±?0.72?GPa, respectively. Then Ti1-xSixN transforms into a nanocomposite structure consisting of cubic Ti(Si)N nanocrystallite enveloped by the amorphous SiNx tissue phase for x?=?0.22, which exhibits a high hardness of 40.0?±?0.6?GPa. However, increasing of Si content leads to a significant increase in compressive stress from ?0.63?GPa for x?=?0 to ?3.78?GPa for x?=?0.13 to ?4.54?GPa for x?=?0.17 to ?5.51?GPa for x?=?0.22. The hardness of Ti1-xSixN coatings can be maintained up to ~ 1000?°C due to the suppressed grain growth, and then decreases for further elevated annealing temperature, whereas the TiN coating exhibits a continuous drop in hardness towards its intrinsic value of ~ 21.3?GPa.  相似文献   

2.
Smooth, uniform and crystalline vanadium oxide thin films were deposited on quartz by spin coating technique with four different rpm i.e., 1000, 2000, 3000 and 4000 and subsequently post annealed at 350, 450 and 550?°C in vacuum. Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were utilized for microstructural characterizations and phase analysis, respectively, for vanadium oxide powder and deposited film. Nanorods were observed to be grown after vacuum annealing. X-ray photoelectron spectroscopy (XPS) technique was utilized to study the elemental oxidation state of deposited vanadium oxide films. Thermo-optical and electrical properties such as solar transmittance (τs), reflectance (ρs), absorptance (αs), infrared (IR) emittance (εir) and sheet resistance (Rs) of different thin films were evaluated. Based on the optical characteristics the optimized condition of the film processing was identified to be spin coated at 3000?rpm. Subsequently, the nanoindentation technique was utilized to measure hardness and Young's modulus of the optimized film. The measured nanomechanical properties were found to be superior to those reported for sputtered vanadium oxide films. Finally, temperature dependent phase transition characteristics of optimized vanadium oxide films were studied by differential scanning calorimetry (DSC) technique. Reversible and repeatable phase transition was found to occur in the range of 44–48?°C which was significantly lower than the phase transition temperature (i.e., 68?°C) of bulk VO2.  相似文献   

3.
In this experimental investigation, the influence of different N2 gas flow rates on different properties (e.g. morphological, mechanical, etc.) of chemical vapor deposited (CVD) Titanium nitride (TiN) coatings has been discussed. The TiN coatings had been grown on Si (100) substrate at elevated temperature (1000 °C) using Titanium dioxide (TiO2) powder. SEM images reveal a dense uniform microstructure with an irregular surface pattern. The surface roughness of the coatings was found to be increased from 12.42 to 28.56 nm with an increase in flow rate. XRD results indicate a B1 NaCl crystal structure of the film with reduced crystallite size with the increasing N2 flow rate. Through the corrosion test, it has been observed that due to the variation of N2 flow rate the corrosion resistance of the films decreases with increasing N2 flow rate. The mismatch of thermal expansion co-efficient in between Si substrate and TiN thin film reduces with higher N2 flow rate. The acoustic and optic phonon mode of TiN coatings have been shifted to higher intensities with higher N2 flow rate. The mechanical properties of the film reveal that the maximum value of hardness (H) and Young's modulus (E) are 30.14 and 471.85 GPa respectively.  相似文献   

4.
《Ceramics International》2016,42(6):7203-7209
Abrasion resistance of stretched grade polymethyl methacrylate (PMMA) was increased by using the sol–gel method to have it coated with a ZrO2/SiO2 thin film. Different molar ratios of Zr(OPr)4/Si(OPr)4 sols were prepared as precursors with propanol. These sols were used for dip-coating the stretched PMMA surfaces to establish very smooth thin films of amorphous Zr–O–Si. Fourier Transform Infrared spectroscopy (FT-IR) was employed to study vibrations of Zr–O–Si bonds within the thin film. The phase analysis was undertaken via X-ray Diffraction (XRD) method. The morphology and thickness of coatings on PMMA were investigated by means of Scanning Electron Microscopy (SEM). The results showed that coating had an amorphous structure with its thickness within the range of 80–100 nm. The water contact angle of PMMA substrates altered from 73° before coating to less than 64° after coating. Once coated, the PMMA substrate had its transparency characteristic (within the UV–vis region) increased. Furthermore, the influences of thermal treatment temperature and molar ratio of precursors (Zr(OPr)4/Si(OPr)4) on abrasion resistance of the coatings were studied.  相似文献   

5.
SiO2 thin films are in high demand for wide range of applications including microelectronics, optoelectronics, solar energy conversion, photocatalysis, and self-cleaning coatings. The performance of thin film is strongly influenced by surface properties like surface roughness, thickness, morphology, wetting behavior, and thermal stability. In these applications, the SiO2 sols were prepared using tetraethylorthosilicate as a source of SiO2 and deposited on 100?×?40?×?2?mm3 glass slide using dip-coating method for 2?min and calcined at 250?°C for 30?min. The SiO2 thin films were obtained using DTAB, SDS, and Tween 20 (Tw 20) surfactants with the thickness of 36.92, 47.15, and 52.39?nm, respectively. Surface morphology was studied with AFM and surface roughness was depicted with 0.9528, 3.6534, and 0.9294?nm. Contact angle measurements have been performed with goniometer to evaluate the wetting behavior of the film. The contact angle of 58.01°, 48.40°, and 37.88° was observed with SDS, DTAB, and Tw 20 film, respectively. The SiO2 thin films with SDS showed more surface roughness and water repelling ability when compared to DTAB and least with Tw 20.  相似文献   

6.
The present work describes structural, morphological, and antibacterial properties of thin film coatings based on tungsten oxide material on stainless-steel substrates. Thin films were prepared by RF magnetron sputtering of W targets in the oxygen/argon plasma environment in 60 W sputtering power. The characterization of the specimens was made on the basis of microstructure and antibacterial properties of the thin films surface. The effect of O2/Ar ratio on the structure, morphology, and antibacterial properties of the tungsten oxide thin films was studied. Methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) were used to assess the properties of deposited thin films. XRD peak analysis indicates (100) and (200) of WO3 phase with hexagonal structure. Moreover, the micro-strain, grain size, and dislocation density were obtained. It is noteworthy that by increasing the oxygen percentage from 10% to 20%, the grain size decreases from 81 to 23 nm while the film micro-strain and dislocation density increases. The SEM results illustrates that tungsten oxide thin films are made of interconnected nano-points in a chain shape with sphere-shaped grains with diameter variation from 10 to 100 nm. The FTIR spectra displays four distinct bands corresponds to O–W–O bending modes of vibrations and W–O–W stretching modes of the WO3 films. The antibacterial effects of tungsten oxide thin films on steel stainless substrate against Escherichia coli bacteria are also examined for the first time and our observation shows that the number of bacteria on all tungsten oxide samples decreases after 24 h. The samples exhibit an excellent antibacterial performance. This paper renders a strategy through which the tungsten oxide thin films for antibacterial purpose and proposes that WO3 thin films are ideal for various medical applications including stainless steel medical tools, optical coatings, and antibacterial coatings.  相似文献   

7.
Lead?free ferroelectric BaSn0.15Ti0.85O3 (BTS) thin films are grown on Pt-coated Si substrates by magnetron sputtering at 650?°C, the effect of sputtering pressure on the microstructural, surface morphological, dielectric properties and leakage characteristic is systematically investigated. XRD analysis shows the crystallinity of BTS thin films with perovskite structure can be improved by appropriate control of the sputtering pressure. The surface morphology analyses reveal that grain size and roughness can be affected by sputtering pressure. The BTS thin films prepared at sputtering pressure of 3.0?Pa exhibit a low dispersion parameter of 0.006, a medium dielectric constant of ~357, a high dielectric tunability of 65.7%@?400?kV/cm and a low loss tangent of 0.0084?@?400?kV/cm. Calculation of figure of merit (FOM) displays a high value of 84.1, and the measurement of leak current shows a very low value of 4.39?×?10–7 A/cm2 at 400?kV/cm. The results indicate that BTS thin film deposited sputtering pressure of 3.0?Pa is an excellent candidate for electrically steerable applications  相似文献   

8.
《Ceramics International》2022,48(4):5239-5245
Ta-doped Bi3.25La0.75Ti3O12(BLTT)/ZnO films were fabricated on Pt(111)/Ti/SiO2/Si substrates by a magnetron sputtering method. Firstly, ZnO crystal thin films were grown on the substrates by a reactive sputtering method. Then, BLTT thin films were deposited on the ZnO layers at room temperature and post-annealed at 600 °C. The micromorphology, ferroelectric and dielectric properties of BLTT/ZnO films were analyzed. The XRD analysis shows that ZnO buffer layer significantly reduces the crystallization temperature of BLTT thin film. The TEM results show that lamellar BLTT grains are grown on ZnO layer at a certain angle with few elements diffusion at the interface of ZnO phase and Bi4Ti3O12 phase. The ferroelectric properties indicate that BLTT/ZnO films exhibit different remanent polarization and coercive fields under electric field with different directions. The novel mechanism of tailoring ferroelectric properties may open new possibilities for designing special ferroelectric devices.  相似文献   

9.
Stainless steel 316L (SS 316L) is widely used in biomedical applications, particularly in surgical tools. Although this class of material has good wear and mechanical properties, it still lacks in antibacterial properties. Therefore, various surface modifications such as antibacterial coatings have been developed to enhance its properties. In this study, the surface of SS 316L was engineered with a thin multi-layer of tantalum oxide (TaO) and silver (Ag) with thickness of 4.7–6.4 μm. The thin film multilayered coatings were deposited using physical vapor deposition (PVD) magnetron sputtering. In this study, Ag/AgTa2O5 nanocomposite thin film is developed to avoid or limit bacterial adhesion on surgical tool surfaces. The as-deposited Ag/AgTa2O5 nanocomposite film were thermally treated to enhance the mechanical properties of the film. The thermal annealing of the as-sputtered thin film at 400 °C induced segregated Ag microstructure, increased the crystallinity and adhesion strength by about 152% (2916 ± 147 mN). The 400 °C annealed thin film exhibited hydrophobicity (102.5°) and thermal stability properties. The superior adhesion strength of the thermally treated film reduces and slows down delamination while in use at the rugged surgical environment.  相似文献   

10.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

11.
The temperature dependent dielectric properties of (Ba0.54875Sr0.44875La0.0025)Ti(1+x)O3 with both an excess and a deficiency of 0.25 mol.% TiO2 were investigated. The samples were prepared by the mixed oxide method and sintered in a conventional oven at temperatures ranging from 1400 °C to 1475 °C. The cubic perovskite structure was confirmed with XRD at room temperature. The sample with an excess of 0.25 mol.% Ti exhibited reduced grain growth while abnormal grain growth was observed for samples without Ti modification. Samples exhibited colossal permittivity for all modified compositions. With a 0.25 mol.% deficiency of Ti a permittivity over 65,000 and a tan δ under 0.05 were measured over a temperature range of ?68 °C to 150 °C and a frequency range between 50 kHz and 1 MHz. This paper shows that by fine tuning the composition, materials with new, exciting and widely adjustable dielectric properties can be achieved.  相似文献   

12.
Thin films with the composition 70 mol% Na0.5Bi0.5TiO3 + 30 mol% NaTaO3 were prepared by sol–gel synthesis and spin coating. The influence of the annealing temperature on the microstructural development and its further influence on the dielectric properties in the low‐ (kHz–MHz) and microwave‐frequency (15 GHz) ranges were investigated. In the low‐frequency range we observed that with an increasing annealing temperature from 550°C to 650°C the average grain size increased from 90 to 170 nm, which led to an increase in the dielectric permittivity from 130 to 240. The temperature‐stable dielectric properties were measured for thin films annealed at 650°C in the temperature range between ?25°C and 150°C. The thin films deposited on corundum substrates had a lower average grain size than those on Si/SiO2/TiO2/Pt substrates. The highest average grain size of 130 nm was obtained for a thin film annealed at 600°C, which displayed a dielectric permittivity of 130, measured at 15 GHz.  相似文献   

13.
Ti:Cu3N thin films were deposited on Si(111), quartz, and glass slide substrates by DC magnetron sputtering in molecular nitrogen ambient. The structural properties of Ti:Cu3N thin films were studied by X-ray diffraction (XRD) analysis. XRD measurements show diffraction band with peaks close to the (100) and (200) diffraction lines of cubic anti-ReO3 structure of Cu3N. The Ti:Cu3N nano-crystalline size is in the range 22–27 nm. Lattice constant expansion reflects Ti incorporation causing the excess nitrogen to occur. Surface morphology shows that the N richness suppresses the grain growth. The optical absorption spectra indicate a remarkable shift to higher energies of the absorption edge due to higher N concentration and quantum size effect. Photoluminescence (PL) measurement shows interstitial N excess and Ti impurity produce shallow and deep levels, respectively. Thermal stability of the Ti:Cu3N films annealed at 300 and 400°C is improved in comparison with that of Ti free Cu3N films.  相似文献   

14.
The effects of deposition temperature on orientation, surface morphology and dielectric properties of the thin films for Ba0.6Sr0.4TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition were investigated. X-ray diffraction patterns revealed a (2 1 0) preferred orientation for all the films. With rising substrate temperature from 650 °C to 700 °C, the crystallinity and crystal grain size of the films increase, the relative dielectric constant increases, but the dielectric losses have not obvious difference. The film deposited at 350 °C and annealed at 700 °C has strongly improved roughness and dielectric permittivity compared with the film only deposited directly at 700 °C. Three distinct relaxation processes within tan(δ) were found for the BaxSr1?xTiO3 film: a broadened process of the film relaxation, an intermediate peak which originates from Maxwell–Wagner–Sillars polarization, and an extremely slow process ascribed to leak current. The complex dielectric permittivity and loss can be fitted by an improved Cole–Cole model corresponding to a stretched relaxation function.  相似文献   

15.
TiN–Ti/Al2O3 composites of varying TiN content (0–20?vol%) were prepared by vacuum hot-pressing sintering at different temperatures (1400?°C and 1500?°C) to investigate how TiN affected the mechanical properties and electrical conductivity of the composites. Sintered samples with added TiN exhibited better performance than those without it. The sample with 20?vol% TiN sintered 1500?°C had an optimal relative density of 99.49, Vickers hardness of 14.94?GPa, flexural strength of 321.55?MPa, and electrical resistivity of 1474.7?μΩ?cm. However, this increased temperature did not improve the best sample resistivity of 930.3?μΩ?cm, which was obtained at 1400?°C. Form SEM images and XRD patterns, the positive effect of TiN on composite mechanical properties may be ascribed to its good performance of high hardness and strength, a decrease of the brittle intermetallic phase, the form of AlTi3N, and the impact of the fine-grained strength of the TiN phase.  相似文献   

16.
In this study, Ti–Si–C composite coatings were synthesized via plasma spraying of agglomerated powders prepared by a spray drying/precursor pyrolysis technology using Ti, Si, and sucrose powders. The influence of Si content, ranging from 0 wt% to 24 wt%, on the microstructure, mechanical properties, and oxidation resistance of the composite coatings was investigated. Results show that the phase composition of the Ti–Si–C composite coatings changes with the increasing Si content. The coatings without Si addition consist of TiC and Ti3O; the coatings with 6–18 wt% Si are composed of TiC, Ti5Si3, and Ti3O; the coatings with Si content of 24 wt% form only TiC and Ti5Si3 phases. As the Si content increases, the hardness of the Ti–Si–C composite coatings increases first and then decreases, depending on the intrinsic hardness of the ceramic phases, the brittleness of Ti5Si3, and the defects such as pores and cracks. The Ti–Si–C composite coatings have high wear resistance due to the in-situ synthesized high-hardness TiC and Ti5Si3. Owing to the high brittleness of Ti5Si3, the increasing Si content leads to higher wear volume loss at room temperature, which can be partially improved in high-temperature wear tests. The oxidation resistance of Ti–Si–C composite coatings increases with the increase of Si content, and the higher the oxidation temperature, the more obvious the influence of the Si addition on oxidation resistance.  相似文献   

17.
In this study, structural, morphological and optical properties, and gas sensor performance of magnesium oxide (MgO) doped titanium dioxide (TiO2) thin films were investigated in detail. Gas sensor metallic patterns were fabricated on Si substrate using traditional photolithographic technique. MgO doped TiO2 thin films were deposited on formed Pt electrode surface by confocal sputtering (co-sputtering) system as the active layer. Thin film characterizations were realized by using secondary ion mass spectroscopy (SIMS), atomic force microscope (AFM) and UV–Vis Spectrometer (UV–Vis). Gas sensing measurements were performed by gas sensing test system against methane gas at working temperature of 300?°C. To evaluate deposition and thermal annealing effects on the sensing performance, sensors were tested under gas. The sensitivity and response/recovery time of gas sensors were measured in 1000?ppm. MgO doped TiO2 based sensor at substrate temperature of 100?°C has high sensitivity and short response/recovery time.  相似文献   

18.
Ultra‐fine 1 mol% CeO2‐10 mol% Sc2O3 co‐doped and stabilized ZrO2 (1Ce10ScSZ) powders with average grain size less than 10 nm in diameter were prepared by hydro/solve‐thermal method using either deionized water, ethanol, or methanol as solvent. As‐synthesized powders were characterized in terms of phase structure, particle morphology, and chemical composition by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high‐resolution transmission electron microscopy (HRTEM), and inductively coupled plasma‐optical emission spectroscopy (ICP‐OES), respectively. Sintering studying was conducted on pellets of 15 mm in diameter and 3 mm in thickness under uniaxial compaction using 25 MPa at either 600, 800, 1000, 1100, 1200, 1400, or 1500°C for 1 hour. Phase transitions and grain morphologies of those sintered samples were characterized by XRD and field emission scanning electron microscopy (FESEM). Mechanical properties were characterized on dense pellets sintered at 1500°C by nanoindentation. Experimental results showed that ethanol was more effective to synthesize agglomerate‐free 1Ce10ScSZ powders as compared with deionized water and methanol. Choice of solvent affected the environment of hydro/solve‐thermal solution, which led to variation of chemical compositions of powders and porosities of sintered pellets, and therefore, influenced their mechanical performance. Our study showed that solvent was important to make dense, thin, and mechanically robust 1Ce10ScSZ electrolyte for potential applications in electrochemical devices. Absolute values of hardness (H) and Young's modulus (E) measured from our samples are much higher and more consistence than those results obtained from commercial vendors reported in literatures.  相似文献   

19.
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium bismuth niobate (BaBi2Nb2O9) thin films was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), atomic force microscopy (AFM) and dielectric properties. BaBi2Nb2O9 (BBN) thin films have been successfully prepared by the polymeric precursor methods and deposited by spin coating on Pt/Ti/SiO2/Si (1 0 0) substrates. The phase formation, the grain size and morphology of the thin films were influenced by the addition of bismuth in excess. It was observed that the formation of single phase BBN for films was prepared with excess of bismuth up to 2 wt%. The films prepared with excess of the bismuth showed higher grain size and better dielectric properties. The 2 wt% bismuth excess BBN thin film exhibited dielectric constant of about 335 with a loss of 0.049 at a frequency of 100 kHz at room temperature.  相似文献   

20.
《Ceramics International》2017,43(8):5901-5906
0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thin films were deposited on Pt/Ti/SiO2/Si substrates annealed from 550 to 700 °C using sol-gel process. The effects of annealing temperature on microstructure, insulating, ferroelectric and dielectric properties were characterized. The result reveals that 0.65PMN-0.35PT thin films possess a polycrystalline structure, matching well with the perovskite phase despite the existence of a slight pyrochlore phase. The film samples annealed at all temperatures exhibit relatively dense surfaces without any large voids and the grain size increases generally with the increase of the annealing temperature. Meanwhile, pyrochlore phase is considerably generated because of the deformation of perovskite phase caused by volatilization of Pb at an excessive high-temperature. The film annealed at 650 °C exhibits superior ferroelectricity with a remanent polarization (Pr) value of 13.31 μC/cm2, dielectric constant (εr) of 1692 and relatively low dielectric loss (tanδ) of 0.122 at 104 Hz due to the relatively homogeneous large grain size of 130 nm and low leakage current of approximately 10-6 A/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号