首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Come together right now with L ‐DOPA : Chemical cross‐linking is widely used to study protein–protein interactions. However, many cross‐linking agents suffer from low reactivity or selectivity. An efficient and selective reaction of site‐specific protein cross‐linking was achieved using genetically incorporated 3,4‐dihydroxy‐L ‐phenylalanine.

  相似文献   


2.
Matrix refolded : The formation of inclusion bodies, which are amorphous aggregates of misfolded insoluble protein, during recombinant protein expression, is one of the biggest bottlenecks in protein science. We report a stepwise, rational optimization procedure for refolding of insoluble proteins (see scheme). In comparison to refolding in‐solution, this parallelized, matrix‐assisted approach allows the refolding of various proteins in a fast and efficient manner.

  相似文献   


3.
4.
The efficiency of protein chemical modification on tyrosine residues with N‐methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H2O2, oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N‐methylluminol derivatives with a minimum amount of H2O2 prevented the occurrence of oxidative side reactions under HRP‐catalyzed conditions. As probes for HRP‐catalyzed protein modification, N‐methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β‐nicotinamide adenine dinucleotide (NADH, H2O2‐free conditions).  相似文献   

5.
Amyloidogenic proteins share a propensity to convert to the β‐structure‐rich amyloid state that is associated with the progression of several protein‐misfolding disorders. Here we show that a single engineered β‐hairpin‐binding protein, the β‐wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid‐β peptide, α‐synuclein, and islet amyloid polypeptide, with sub‐micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer‐binding agents.  相似文献   

6.
7.
The organization of proteins into new hierarchical forms is an important challenge in synthetic biology. However, engineering new interactions between protein subunits is technically challenging and typically requires extensive redesign of protein–protein interfaces. We have developed a conceptually simple approach, based on symmetry principles, that uses short coiled‐coil domains to assemble proteins into higher‐order structures. Here, we demonstrate the assembly of a trimeric enzyme into a well‐defined tetrahedral cage. This was achieved by genetically fusing a trimeric coiled‐coil domain to its C terminus through a flexible polyglycine linker sequence. The linker length and coiled‐coil strength were the only parameters that needed to be optimized to obtain a high yield of correctly assembled protein cages.  相似文献   

8.
Recombinant protein overexpression of large proteins in bacteria often results in insoluble and misfolded proteins directed to inclusion bodies. We report the application of shear stress in micrometer‐wide, thin fluid films to refold boiled hen egg white lysozyme, recombinant hen egg white lysozyme, and recombinant caveolin‐1. Furthermore, the approach allowed refolding of a much larger protein, cAMP‐dependent protein kinase A (PKA). The reported methods require only minutes, which is more than 100 times faster than conventional overnight dialysis. This rapid refolding technique could significantly shorten times, lower costs, and reduce waste streams associated with protein expression for a wide range of industrial and research applications.  相似文献   

9.
The 2014 report from the World Health Organization (WHO) on antimicrobial resistance revealed an alarming rise in antibiotic resistance all around the world. Unlike classical antibiotics, with the exception of a few species, no acquired resistance towards antimicrobial peptides (AMPs) has been reported. Therefore, AMPs represent leads for the development of novel antibiotics. Caenopore‐5 is constitutively expressed in the intestine of the nematode Caenorhabditis elegans and is a pore‐forming AMP. The protein (82 amino acids) was successfully synthesised by using Boc solid‐phase peptide synthesis and native chemical ligation. No γ‐linked by‐product was observed despite the use of a C‐terminal Glu‐thioester. The folding of the synthetic protein was confirmed by 1H NMR spectroscopy and circular dichroism and compared with data recorded for recombinant caenopore‐5. The permeabilisation activities of the protein and of shortened analogues were evaluated.  相似文献   

10.
Water‐in‐oil (w/o) emulsions are used as a cellular model because of their unique cell‐like architecture. Previous works showed the capability of eukaryotic‐cell‐sized w/o droplets (5–50 μm) to support protein synthesis efficiently; however data about smaller w/o compartments (<1 μm) are lacking. This work focuses on the biosynthesis of the enhanced green fluorescent protein (EGFP) inside sub‐micrometric lecithin‐based w/o droplets (0.8–1 μm) and on its dependence on the compartments’ dynamic properties in terms of solute exchange mechanisms. We demonstrated that protein synthesis is strongly affected by the nature of the lipid interface. These findings could be of value and interest for both basic and applied research.  相似文献   

11.
A new enzymatic protein ligation tool , sortase, has recently emerged from Gram‐positive bacteria. This article outlines the technique, sortase‐mediated ligation, and its applications in protein engineering, which include the introduction of unnatural molecules into proteins, protein immobilization, protein–protein conjugation, protein cyclization, as a self‐cleavable tag for protein expression, protein–PNA hybrids, neoglycoconjugates, and cell‐surface protein labeling, etc.

  相似文献   


12.
We described a rapid site‐selective protein immobilization strategy on glass slides and magnetic nanoparticles, at either the N or C terminus, by a 2‐cyanobenzothiazole (CBT)‐cysteine (Cys) condensation reaction. A terminal cysteine was generated at either terminus of a target protein by a combination of expressed protein ligation (EPL) and tobacco etch virus protease (TEVp) digestion, and was reacted with the CBT‐solid support to immobilize the protein. According to microarray analysis, we found that glutathione S‐transferase immobilized at the N terminus allowed higher substrate binding than for immobilization at the C terminus, whereas there were no differences in the activities of N‐ and C‐terminally immobilized maltose‐binding proteins. Moreover, immobilization of TEVp at the N terminus preserved higher activity than immobilization at the C terminus. The success of utilizing CBT‐Cys condensation and the ease of constructing a terminal cysteine using EPL and TEVp digestion demonstrate that this method is feasible for site‐selective protein immobilization on glass slides and nanoparticles. The orientation of a protein is crucial for its activity after immobilization, and this strategy provides a simple means to evaluate the preferred protein immobilization orientation on solid supports in the absence of clear structural information.  相似文献   

13.
A simple and efficient method is described for the introduction of noncanonical amino acids at multiple, defined sites within recombinant polypeptide sequences. Escherichia coli MRA30, a bacterial host strain with attenuated activity of release factor 1 (RF1), was assessed for its ability to support incorporation of a diverse range of noncanonical amino acids in response to multiple encoded amber (TAG) codons within genes derived from superfolder GFP and an elastin‐mimetic protein polymer. Suppression efficiency and protein yield depended on the identity of the orthogonal aminoacyl‐tRNA synthetase/tRNACUA pair and the noncanonical amino acid. Elastin‐mimetic protein polymers were prepared in which noncanonical amino acid derivatives were incorporated at up to 22 specific sites within the polypeptide sequence with high substitution efficiency. The identities and positions of the variant residues were confirmed by mass spectrometric analysis of the full‐length polypeptides and proteolytic cleavage fragments from thermolysin digestion. The data suggest that this multisite suppression approach permits the preparation of protein‐based materials in which novel chemical functionalities can be introduced at precisely defined positions within the polypeptide sequence.  相似文献   

14.
15.
BACKGROUND: The aim of the work presented was to synthesize a series of amphiphilic hyperbranched poly[(amine‐ester)‐co‐(D ,L ‐lactide)] (HPAE‐co‐PLA) copolymers and study the formation of copolymeric micelles. These copolymeric micelle systems are expected to be potential candidates for applications in protein drug delivery. RESULTS: The chemical structures of the copolymers were confirmed by Fourier transform infrared spectroscopy, 13C NMR and thermogravimetric analysis. Fluorescence spectroscopy and dynamic light scattering confirmed the formation of copolymeric micelles of the HPAE‐co‐PLA copolymers. The maintenance of stability of bovine serum albumin (BSA) during release from micelles in vitro was also measured using circular dichroism and fluorescence spectrometry. CONCLUSION: Novel hyperbranched HPAE‐co‐PLA copolymers have been synthesized. Conjugation of PLA to HPAE was proved to be an available method for the preparation of micelles for protein delivery. The BSA‐loaded micelles showed enhanced encapsulation efficiency and the structural stability of BSA was retained during the release process. The hyperbranched polymeric micelles could be useful as drug carriers for protein drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
To achieve the injectable hydrogel system in order to improve bone regeneration by locally delivering a protein drug including bone morphogenetic proteins, thermo‐responsive injectable hydrogels composed of N‐isopropylacrylamide (NIPAAm) and vinyl phosphonic acid (VPAc) were prepared. The P(NIPAAm‐co‐VPAc) hydrogels were also biomineralized by urea‐mediation method to create functional polymer hydrogels that deliver the protein drug and mimic the bone extracellular matrix. The loosely cross‐linked P(NIPAAm‐co‐VPAc) hydrogels were pliable and fluid‐like at room temperature and could be injected through a small‐diameter aperture. The lower critical solution temperature (LCST) of P(NIPAAm‐co‐VPAc) hydrogel was influenced by the monomer ratio of NIPAAm/VPAc and the hydrogel with a 96/4 molar ratio of NIPAAm/VPAc exhibited an LCST of ~34.5°C. Water content was influenced by temperature, NIPAAm/VPAc monomer ratio, and biomineralization; however, all hydrogels maintained more than about 77% of the water content even at 37°C. In a cytotoxicity study, the P(NIPAAm‐co‐VPAc) and biomineralized P(NIPAAm‐co‐VPAc) hydrogels did not significantly affect cell viability. The loading content of bovine serum albumin in hydrogel, which was used as a model drug, gradually increased with the amount of VPAc in the hydrogel owing to the ionic interaction between VPAc groups and BSA molecules. In addition, the release behavior of BSA from the P(NIPAAm‐co‐VPAc) hydrogels was mainly influenced by the drug loading content, water content, and biomineralization of the hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Sepharose FF was modified with diethylaminoethyl‐dextran (DEAE‐dextran, DexD) and/or DEAE (D) to fabricate three types of ion exchangers FF‐DexD (grafting‐ligand resin), FF‐D (surface‐ligand resin), and FF‐D‐DexD (mixed‐ligand resin), for protein adsorption equilibria and kinetics study. It was found that both adsorption capacity and uptake rate (effective diffusivity, De) were significantly enhanced by grafting DEAE‐dextran. Notably, the De values on FF‐DexD and FF‐D‐DexD (De/D0 > 1.4) were six times greater than those on FF‐D (De/D0 < 0.3). More importantly, the increase of surface‐ligand density greatly enhanced uptake kinetics on FF‐D‐DexD. The results indicate that the surface ligands assisted the transport of bound proteins on polymer chains in the mixed‐ligand resins. That is, surface ligands worked as “transfer stations” between two neighboring chains, resulting in enhanced transport of bound proteins on chains. The research thus disclosed the unique role of surface ligands in facilitating protein uptake kinetics onto polymer‐grafted ion‐exchangers. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3812–3819, 2016  相似文献   

18.
We describe a new expression system for efficient non‐canonical amino acid mutagenesis in cultured mammalian cells by using the pyrrolysine tRNA synthetase/tRNACUAPyl pair. A significant improvement in the incorporation of non‐canonical amino acids into proteins was obtained by combining all the required genetic components into a single and compact vector that can be efficiently delivered to different mammalian cell lines by conventional transfection reagents.  相似文献   

19.
20.
The potential of platinum(II) as a bifunctional linker in the coordination of small molecules, such as imaging agents or (cytotoxic) drugs, to monoclonal antibodies (mAbs) was investigated with a 4‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD) fluorophore and trastuzumab (Herceptin?) as a model antibody. The effect of ligand and reaction conditions on conjugation efficiency was explored for [Pt(en)(L‐NBD)Cl](NO3) (en=ethylenediamine), with L=N‐heteroaromatic, N‐alkyl amine, or thioether. Conjugation proceeded most efficiently at pH 8.0 in the presence of NaClO4 or Na2SO4 in tricine or HEPES buffer. Reaction of N‐coordinated complexes (20 equiv) with trastuzumab at 37 °C for 2 h, followed by removal of weakly bound complexes with excess thiourea, afforded conjugates with an NBD/mAb ratio of 1.5–2.9 that were stable in phosphate‐buffered saline at room temperature for at least 48 h. In contrast, thioether‐coordinated complexes afforded unstable conjugates. Finally, surface plasmon resonance analysis showed no loss in binding affinity of trastuzumab after conjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号