首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
目的:提高海栖热袍菌(Thermotoga maritima MSB8)来源的木聚糖酶XynB和α-葡萄糖醛酸苷酶AguA生产效率并降低生产成本。方法:利用基因重组技术将海栖热袍菌的XynB和AguA基因置于不同表达盒下构建共表达载体pET-20b-xynB-aguA和pET-28a-xynB-aguA,分别转化大肠杆菌Escherichia coli JM109(DE3)进行诱导表达,获得双酶混合物进而水解桦木木聚糖及玉米芯。结果:重组菌E. coli JM109(DE3)/pET-28a-xynB-aguA比E. coliJM109(DE3)/pET-20b-xynB-aguA产酶更具优势,在LB培养基中诱导培养8 h,XynB和AguA的产量分别达到7.6 U/mL和0.5 U/mL,在TB培养基中培养,XynB可达到10.27 U/mL,AguA为1.5 U/mL。在80 ℃水解条件下,双酶比单一木聚糖酶能够更彻底降解桦木木聚糖,所得酶解液中木二糖的含量和纯度更高;从还原糖释放量及电子显微镜观察可以看出双酶液对农副产品玉米芯具有良好的降解作用。结论:XynB和AguA基因(T. maritima)的克隆共表达具有可行性,并且在生物转化、食品工业和饲料生产等领域具有潜在应用前景。  相似文献   

2.
酶水解爆破秸秆制备低聚木糖   总被引:5,自引:1,他引:5  
研究了木聚糖酶水解爆破秸秆制备低聚木糖的工艺,得到如下结论:当爆破秸秆与水质量比为1∶7.5、pH6.0、黑曲霉木聚糖酶添加量为198U/g(干基)、53℃、酶解12h时,可获得较好的酶解效果,酶解液总糖含量达到49.80mg/mL,还原糖含量达到17.03mg/mL、木聚糖水解率达到63.77%(对原料木聚糖)、木聚糖平均聚合度降至3.10;酶解产物中低聚糖主要为木二糖和木三糖,低聚木糖含量达到50.80%(对固形物)。  相似文献   

3.
采用碱法提取制备玉米芯木聚糖,以提取率为指标,研究了碱液浓度、提取温度、处理时间、提取振荡速度、醇沉p H等因素对提取率的影响,通过木聚糖酶酶解木聚糖提取低聚木糖,以酶解产物中还原糖含量、可溶性总糖含量及平均聚合度DP为指标,采用正交试验探讨了酶浓度、酶解温度、酶解时间、p H值、底物浓度对酶解产物的影响,得出酶解玉米芯木聚糖制备低聚木糖的最佳工艺条件为:底物浓度为12%(w/v),酶解p H为4,酶解温度为45℃条件下添加0.06%(w/v)的木聚糖酶,酶解8h,得到总糖含量为18.88mg/m L,还原糖含量为9.46 mg/m L,聚合度DP为1.85。  相似文献   

4.
稀酸预处理玉米芯酶解工艺响应面优化研究   总被引:1,自引:0,他引:1  
木质纤维原料还原糖(葡萄糖、木糖)转化是燃料乙醇生产的关键步骤之一,该文以玉米芯为原料,采用稀硫酸处理、酶水解以提高还原糖转化量。以还原糖转化量为考核指标,采用单因素试验及响应面试验设计优化稀酸处理玉米芯酶解条件,拟合硫酸体积分数、加酶量、酶解时间3个因素对还原糖转化量的回归模型。结果表明,最佳酶解工艺为121 ℃条件下预处理60 min,硫酸体积分数0.8%,料液比1∶15(g∶mL),加酶量7%(纤维素酶∶半纤维素酶1∶1),酶解时间70.9 h。在此最佳条件下,采用高效液相色谱(HPLC)法测定酶解液中还原糖转化量为462.62 mg/g,其中木糖、葡萄糖转化量分别为330.02 mg/g、132.60 mg/g,还原糖转化率可达46.3%。  相似文献   

5.
采用3,5-二硝基水杨酸法(DNS法)测定酶解后还原糖释放量,研究4种不同酚酸(阿魏酸、对-香豆酸、水杨酸、单宁酸)对木聚糖酶活力的影响。结果表明:阿魏酸、对-香豆酸、水杨酸能提高木聚糖酶活力,当这3种酚酸质量浓度为0.75mg/mL时,酶活力分别提高65.59%、46.21%和12.83%。单宁酸抑制木聚糖酶活性,添加量为0.50mg/mL时,抑制率达37.18%。动力学研究表明:上述4种酚酸均能提高酶与底物的亲和力,对-香豆酸能提高酶反应速度,但单宁酸会使反应速度显著降低。  相似文献   

6.
以木聚糖酶Shearzyme 500L水解蔗渣木聚糖制备低聚木糖,用DNS法测定酶解液中的总糖和还原糖,HPLC法测定酶解产物组成,其适宜的水解条件为底物质量浓度3g/100mL、pH5.0、60℃、木聚糖中酶用量50U/g、水解时间24h。在此条件下底物水解率约为63.1%,水解产物的81.5% 为低聚木糖,其中木二糖占54.8%,木三糖占26.7%。Shearzyme 500L 不能将一分子木二糖水解为两个木糖单糖,但能水解木三糖并相应生成木二糖与木糖。副产物木糖能显著抑制Shearzyme 500L 活性,降低木聚糖的水解率。  相似文献   

7.
以玉米芯木聚糖为碳源的草菇木聚糖酶的发酵条件   总被引:3,自引:0,他引:3       下载免费PDF全文
在玉米芯木聚糖的碱法提取中,玉米芯木聚糖在80℃抽提120min的抽提率较高,还原糖质量分数较低,同时,抽提液的颜色较浅,明显优于121℃抽提30min.以80℃抽提的木聚糖为诱导,草菇产生的木聚糖酶的酶活比121℃抽提的木聚糖的酶活高.以80℃抽提的木聚糖为碳源,通过正交试验,设计出适合草菇生长和产生木聚糖酶的发酵条件.培养基组成为:木聚糖15g/L,(NH4)2SO42.5g/L,Tween 803g/L,酵母膏1g/L,KH2PO41g/L,MgSO4·7H2O0.6g/L,微量元素0.0005g/L.pH7.0,40℃下150r/min培养4d,此时酶活达32.4IU/mL.  相似文献   

8.
韦露莎  吴一飞  陈辉 《食品科学》2016,37(5):108-113
通过基因克隆方法获得枯草芽孢杆菌木聚糖酶XynA,考察经镍离子亲和柱纯化后的XynA分别在桦木木聚糖和毛榉木木聚糖中的酶解情况,利用薄层色谱法(thin layer chromatography,TLC)及基质辅助激光解吸/电离飞行时间质谱(matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry,MALDI-TOF/MS)法鉴定木聚糖酶XynA的酶解产物。运用MALDI-TOF/MS分析枯草芽孢杆菌木聚糖酶XynA酶解桦木木聚糖和毛榉木木聚糖产物不同的聚合度寡糖的分布情况。结果表明:在桦木木聚糖酶解液中,产生的中性木寡糖主要为木二糖(X2)和木三糖(X3),酸性木寡糖聚合度为4~12,并且每一个酸性木寡糖上仅连接着一个甲基葡萄糖醛酸侧链(MeG)。在毛榉木木聚糖酶解液中,产生的中性木寡糖与在桦木木聚糖酶解液中相同,酸性木寡糖的结构相似,聚合度为4~16。因此木聚糖酶XynA具有生产木二糖(X2)和木三糖(X3)以及酸性木寡糖(MeGXn)的功能。  相似文献   

9.
乙酰木聚糖酯酶协同木聚糖酶降解木聚糖的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
探讨了宇佐美曲霉(Aspergillus usamii)乙酰木聚糖酯酶和第10、11家族木聚糖酶之间的协同作用。利用作者所在实验室构建保藏的3株工程酵母Pichia pastoris GS115/Auaxe、GS115/Auxyn11A和GS115/Auxyn10A进行甲醇诱导发酵,分别获得重组乙酰木聚糖酯酶和木聚糖酶。在木聚糖酶最适p H、40℃、料液质量体积比1 g∶60 m L、水解2 h的条件下分别研究了不同加酶量作用于小麦麸皮时生成的还原糖量。结果表明,乙酰木聚糖酯酶与第11家族木聚糖酶有更好的协同作用,并在添加量比(酶活力比)为5∶1时所测协同效果最好,还原糖生成量较木聚糖酶单独作用增加了46%。因此,在乙酰木聚糖酯酶的作用下,木聚糖上乙酰基的去除,对提高木聚糖酶对木聚糖的水解效率具有重要作用。  相似文献   

10.
朱运平  禇文丹  李秀婷  滕超  李娥  杨然 《食品科学》2012,33(21):177-182
以木聚糖为唯一碳源制作选择培养基,利用透明圈法筛选高产木聚糖酶菌株,对其中一株产酶较高的菌株L10608进行液体发酵条件优化并对所产木聚糖酶的水解特性进行研究。结果表明:菌株L10608最佳产酶条件为以质量浓度25g/L、80目的水不溶性玉米芯木聚糖为碳源,10g/L大豆蛋白胨和5g/L酵母浸膏为复合氮源,初始pH6.0、培养温度40℃、转速200r/min、表面活性剂吐温-80质量浓度4g/L,最佳产酶条件下木聚糖酶活力达1074.8U/mL。以桦木木聚糖、榉木木聚糖和燕麦木聚糖为底物研究菌株L10608所产木聚糖酶的水解特性,结果表明该木聚糖酶为内切型木聚糖酶,水解主要产物为木二糖和木三糖。表明菌株L10608有望作为功能性低聚木糖的生产菌株。  相似文献   

11.
木霉T6木聚糖酶液态发酵生产研究   总被引:5,自引:0,他引:5  
研究了野生型木霉T6菌木聚糖酶的液态发酵条件 ,碳源以质量浓度为 30 g/L的天然材料麦秸为最好 ,以质量浓度为 1g/L的尿素作为氮源有利于木聚糖酶的合成。起始 pH、培养温度及接种量等都对T6菌木聚糖酶的合成有影响。在一定条件下 ,30℃培养 4 5d后木聚糖酶的活力达到 91IU/mL  相似文献   

12.
木聚糖酶在造纸、酿酒等方面有广泛的应用。为了获得低成本高活力的木聚糖酶,以黑果腺肋花楸作为主要培养基原料,通过单因素试验和正交试验,探索里氏木霉和绿色木霉共发酵生产木聚糖酶的培养条件。结果表明,木聚糖酶活性最高的培养条件为氮源(NH4NO3)质量浓度0.5 g/L,果渣质量分数25%,里氏木霉与绿色木霉的质量比3∶2,接种质量分数14%,pH 5.50,培养到第4天时,其木聚糖酶活性高达121.62 U/mL。同时还探究了无机离子添加量对木聚糖酶活性的影响,无机离子的最佳添加量是MgSO4 12 mg/L和MnSO4 1.4 mg/L。结合正交试验的最佳培养条件以及最佳无机离子添加量进行发酵后,木聚糖酶的活性高达(127.25±0.09) U/mL,与基础培养基相比,木聚糖酶产量增加了69.46%。使用里氏木霉和绿色木霉共发酵黑果腺肋花楸生产木聚糖酶在获得了高活性木聚糖酶的同时降低了成本,对木聚糖酶工业化生产有重要参考价值。  相似文献   

13.
考察了试验室规模下超声波处理玉米芯提取木聚糖经酶水解制备低聚木糖的影响因素,通过单因素试验和正交试验,优化了提取和水解条件。结果表明:以质量分数5%Na OH溶液为提取剂,超声功率为180 W,超声温度为60℃的条件下提取45 min,木聚糖产率可达到33.18%。所得提取液经脱色,调p H,调木聚糖底物浓度后酶水解制备低聚木糖。最佳酶解条件为:木聚糖底物质量浓度10 mg/m L,加酶量质量分数1.5%(相对于玉米芯干物料),酶水解时间为8 h的条件下,水解液中还原糖的质量浓度达到6.89 mg/m L。  相似文献   

14.
该研究以车前子壳为诱导底物,采用单因素试验和响应面试验对里氏木霉(Trichoderma reesei)诱导木聚糖酶和阿拉伯糖苷酶的协同制备条件进行优化。单因素试验结果表明,在诱导碳源为车前子壳,初始pH为5.0、底物质量浓度为20 g/L、培养时间为4.0 d、碳氮比为1.6∶1.0时,木聚糖酶和阿拉伯糖苷酶活力最高,分别为(10.59±0.33)IU/mL和(8.99±0.05)IU/mL。响应面试验结果表明,最佳产酶条件为培养时间4.0 d、底物质量浓度20 g/L、碳氮比1.6∶1.0。在此最佳条件下,木聚糖酶和阿拉伯糖苷酶活力分别为(11.42±0.15)IU/mL和(10.83±0.08)IU/mL,分别是未优化前的2.55倍和7.37倍。  相似文献   

15.
从山东淄博酒曲中筛选得到1 株产耐热木聚糖酶菌株FSD0302,经鉴定为疏绵状丝孢菌(Thermomyces lanuginosus)。对该菌进行单因素优化产酶条件考察,结果显示:当玉米芯木聚糖粒度20~40?目、质量浓度4?g/100?mL、初始培养基pH?6.0、发酵温度50?℃、转速200?r/min时,T. lanuginosus FSD0302所产木聚糖酶活力高达5?357.1?U/mL,比活力为10?493.72?U/mg,较初筛时产酶量提高了2.9?倍;该菌可产2?种木聚糖酶,分子质量分别约为20?kDa和60?kDa,酶学性质考察结果表明,该菌所产木聚糖酶粗酶的最适温度为75?℃,最适pH值分别为5.5及7.5且在pH?3.5~9.0范围内可保留50%以上酶活力。综上所述,来源于T. lanuginosus FSD0302的耐热木聚糖酶可在低聚木糖生产中具有一定的应用前景。  相似文献   

16.
酶法制备玉米芯低聚木糖工艺条件的研究   总被引:2,自引:0,他引:2  
采用质量分数为10%的NaOH提取玉米芯木聚糖,并对玉米芯木聚糖进行酶法水解,响应面法(RSM法)优化酶解条件.结果表明:玉米芯木聚糖的最佳酶解条件为酶添加量70 U/g、反应时间10 h、玉米芯木聚糖悬浮液质量浓度4 g/(100ml).TLC及HPLC分析表明:酶解液中含有木糖、木二糖、木三糖、木四糖,其中木二糖和木三糖的含量较高.HPLC定量结果表明酶解液中木糖、木二糖和木三糖的含量分别为1.7、3.1和3.6 mg/ml.  相似文献   

17.
目的:对毛壳霉(Chaetomium sp.)CQ31木聚糖酶B(CsXyn11B)进行分泌表达,以提高产酶水平并探究在面包烘焙中的应用价值。方法:将木聚糖酶基因在毕赤酵母中表达,高密度发酵提高其产酶水平,对酶学性质进行表征并将其应用在面包烘焙中。结果:重组菌经高密度发酵156 h,木聚糖酶酶活力为2788 U/mL。CsXyn11B最适pH为8.0,最适温度为65 ℃。CsXyn11B能够水解多种木聚糖底物,对燕麦木聚糖、小麦阿拉伯木聚糖、榉木木聚糖和桦木木聚糖的比酶活分别为1145.8、1041.7、692.3和653.3 U/mg。该酶水解阿拉伯木聚糖,水解产物以聚合度4~6的低聚木糖为主。在面包制作过程中加入3 mg/kg CsXyn11B使面包比容增加15.9%,面包硬度降低25.3%,4 ℃贮藏2 d后硬度比对照组降低17%。结论:毛壳霉木聚糖酶B的优良酶学特性使其在烘焙食品中具有良好的应用前景。  相似文献   

18.
不同原料酶法制备低聚木糖的研究及成分分析   总被引:1,自引:0,他引:1  
对木聚糖酶的酶学特性进行了研究,同时以甘蔗渣、玉米芯、麸皮、啤酒槽为原料酶解制备低聚木糖并对其酶解液的还原糖含量和主要成分进行了分析。结果表明:该木聚糖酶的最适反应温度为60℃,最适反应pH为5.0;同时在温度为40~60℃和pH为6的情况下,木聚糖酶具有较好的稳定性。在最佳酶解条件下,采用木聚糖酶酶解甘蔗渣、玉米芯、麸皮、啤酒槽中的木糖,通过测定酶解液中的还原糖含量以分析木聚糖的水解度,结果表明,麸皮中木聚糖的水解度最高,为21.19mg/mL;其它依次为啤酒糟、玉米芯、蔗渣。采用高效液相色谱法对4种不同原料的木聚糖酶水解产物进行分析,结果显示:啤酒糟的酶解产物中木二糖和木三糖的相对含量最高,分别为13%、26.7%,其他依次为玉米芯、麸皮、甘蔗渣。  相似文献   

19.
为优化烟草秸秆低聚木糖制备参数,采用碱解方法提取木聚糖、酶解法制备低聚木糖以及单因素实验法考察了常见因素对工艺的影响。结果表明,木聚糖提取条件为:2.000 g秸秆粉末(≤100目)浸没于20.00 mL浓度为24% NaOH(m/V)和1% NaBH4m/V)碱液中,70 ℃条件下浸提4 h,滤液加3倍乙醇体积用量进行醇沉以及0.2倍乙酸体积用量进行中和。制备低聚木糖的条件为:溶液pH为5.50,温度40 ℃,时间6 h,木聚糖溶液(20 mg/mL)10 mL,木聚糖酶液(0.6%,m/V,4.1 U/mL)20 mL。低聚木糖分离提纯条件为:阳离子树脂柱分离纯化,填充高度18.0 cm、直径为4.5 cm;纯化液用高效液相色谱进行定性定量分析。通过上述方法得到的低聚木糖产品纯度较高,对工业制备低聚木糖工艺优化有一定的参考价值。  相似文献   

20.
以小麦麸皮为原料,采用碱提法对小麦麸皮中的水不溶性阿拉伯木聚糖进行提取。以水不溶性阿拉伯木聚糖得率为响应值,采用单因素试验和响应面分析法对其提取工艺进行优化,并利用不同木聚糖酶对其进行酶解,采用薄层色谱(TLC)法对酶解产物进行分析。结果表明,水不溶性阿拉伯木聚糖的最佳提取工艺为料液比1∶193(g∶mL)、提取温度61 ℃、提取时间5 h。在此最优提取工艺条件下,水不溶性阿拉伯木聚糖的得率为51.61%,较优化前提高20.71%。用不同种类木聚糖酶对提取的水不溶性阿拉伯木聚糖进行酶解,TLC分析结果表明,链霉菌10904来源的木聚糖酶A对水不溶性阿拉伯木聚糖有较好的底物特异性,酶解产物丰富且以木二糖为主,为阿拉伯低聚木糖的制备提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号