首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of active layer thickness on recombination kinetics of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) based solar cells. Analysis of the fitted Lambert W-function of illuminated current density–voltage (JV) characteristics revealed increased recombination processes with increased active layer thicknesses. The ideality factor extracted from PCDTBT:PCBM solar cells continuously increased from 1.89 to 3.88 when photoactive layer thickness was increased from 70 to 150 nm. We found that such increase in ideality factor is closely related to the defect density which is increased with increased photoactive layer thickness beyond 110 nm. Therefore, the different density of defect states in PCDTBT:PCBM solar cells causes the different recombination paths where solar cells with a thicker active layer (?110 nm) are considered to undergo coupled trap-assisted recombination processes while single-defect trap-assisted recombination is dominant for thinner (70–90 nm) PCDTBT:PCBM solar cells. As a result, we found that the optimal efficiencies of PCDTBT:PC71BM solar cells were limited to the active layers between 70 and 90 nm. Particularly, when PCDTBT:PC71BM solar cells were optimized with an active layer thickness of 70 nm, energy conversion efficiency reached 6.5% while an increase in thickness led to the reduction of efficiency to 4.7% at 133 nm but then an increase to 5.02% at 150 nm.  相似文献   

2.
Functionalized graphene nanoflakes (GNFs) are used as an electron‐cascade acceptor material in air‐processed organic ternary bulk heterojunction solar cells. The functionalization is realized via the attachment of the ethylenedinitrobenzoyl (EDNB) molecule to the GNFs. Simulation and experimental results show that such nanoscale modification greatly influences the density of states near the Fermi level. Consequently, the GNF‐EDNB blend presents favorable highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels to function as a bridge structure between the poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) and the [6,6]‐phenyl‐C71‐butyric‐acid‐methyl‐ester (PC71BM). The improved exciton dissociation and charge transport are associated with the better energy level alignment of the ternary blend and the high electrical conductivity of the GNFs, which act as additional electron transport channels within the photoactive layer. The resulting PCDTBT/GNF‐EDNB/PC71BM ternary organic solar cells, fabricated entirely under ambient conditions, exhibit an average power conversion efficiency enhancement of ≈18% as compared with the binary blend PCDTBT/PC71BM.  相似文献   

3.
The effect of solvent mixtures on the morphologies of poly[N-9′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend films is investigated. 1,2,4-Trichlorobenzene (TCB) which is a good solvent for PCDTBT is selected to mix with chloroform (CF), chlorobenzene (CB) and o-dichlorobenzene (oDCB) for tuning the morphology of the PCDTBT:PC71BM blend. It is found that formation of nanoscale phase separation with a fibrillar PCDTBT nanostructure of PCDTBT:PC71BM blend which is favorable for exciton separation and charge carrier transport is strongly dependent on the solubility parameters of the solvent mixtures. A clearly defined nanoscale phase separation of the PCDTBT:PC71BM blend can be obtained with TCB:CF mixture. The resulted morphology is similar to that produced with sole DCB solvent that is currently the best solvent for PCDTBT:PC71BM blend solar cells. Moreover, the TCB:CF mixture demonstrates better solubility and processibility for PCDTBT:PC71BM blend and allows us to prepare thick active layer that is required in large-area roll-to-roll process. The polymer solar cells with 250 nm- thick active layer are fabricated by using TCB:CF solvent mixture and the power conversion efficiency of the devices reaches 6.45%. A highest short-circuit current of 13.6 mA/cm2 is achieved due to enhanced optical absorption of thick active layer.  相似文献   

4.
Small amounts of impurity, even one part in one thousand, in polymer bulk heterojunction solar cells can alter the electronic properties of the device, including reducing the open circuit voltage, the short circuit current and the fill factor. Steady state studies show a dramatic increase in the trap‐assisted recombination rate when [6,6]‐phenyl C84 butyric acid methyl ester (PC84BM) is introduced as a trap site in polymer bulk heterojunction solar cells made of a blend of the copolymer poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the fullerene derivative [6,6]‐phenyl C61 butyric acid methyl ester (PC60BM). The trap density dependent recombination studied here can be described as a combination of bimolecular and Shockley–Read–Hall recombination; the latter is dramatically enhanced by the addition of the PC84BM traps. This study reveals the importance of impurities in limiting the efficiency of organic solar cell devices and gives insight into the mechanism of the trap‐induced recombination loss.  相似文献   

5.
In this work we present regular and inverted organic tandem solar cells from poly[N-9′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole): [6,6]-phenyl C70-butyric acid methyl ester (PCDTBT:PC71BM) with power conversion efficiencies of up to 4.5%. The recombination zone comprises an electron conducting, precursor based zinc oxide buffer layer that was applied from solution under ambient conditions and at moderate processing temperatures. Optimized active layer thicknesses in both subcells were derived from optical Transfer Matrix simulations. The short circuit current density of the tandem cell exceeds half the short circuit current density of the single absorber cells indicating a real gain in quantum yield when utilizing the tandem architecture.  相似文献   

6.
This paper reports polymer solar cells with a 7% power conversion efficiency (PCE) based on bulk heterojunction (BHJ) composites of the alternating co-polymer, poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT), and the fullerene derivative [6,6]-phenyl C71-butyric acid methyl ester (PC71BM). As confirmed by transmission electron microscopy, solvent–vapor annealing (SVA) of the thin (70 nm) BHJ photoactive layer by exposure to chloroform vapor, for a short period of time (30 s) after deposition, leads to reconstructed nanoscale morphology of donor/acceptor domains, well-dispersed fullerene phase and effective photo-absorption of BHJ. Consequently, SVA-reconstructed devices with a PCDTBT:PC71BM blend ratio of 1:5 (wt%) exhibit ~50% improvement in PCE, with short-circuit current Jsc = 15.65 mA/cm2, open-circuit voltage Voc = 0.87 V, and PCE = 7.03%, in comparison to those of the 1:4 (wt%) blends with SVA treatment.  相似文献   

7.
A range of optical probes are used to study the nanoscale‐structure and electronic‐functionality of a photovoltaic‐applicable blend of the carbazole co‐polymer poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the electronic accepting fullerene derivative (6,6)‐phenyl C70‐butyric acid methyl ester (PC70BM). In particular, it is shown that the glass transition temperature of a PCDTBT:PC70BM blend thin‐film is not sensitive to the relative blend‐ratio or film thickness (at 1:4 blending ratio), but is sensitive to casting solvent and the type of substrate on which it is deposited. It is found that the glass transition temperature of the blend reduces on annealing; an observation consistent with disruption of ππ stacking between PCDTBT molecules. Reduced ππ stacking is correlated with reduced hole‐mobility in thermally annealed films. It is suggested that this explains the failure of such annealing protocols to substantially improve device‐efficiency. The annealing studies demonstrate that the blend only undergoes coarse phase‐separation when annealed at or above 155 °C, suggesting a promising degree of morphological stability of PCDTBT:PC70BM blends.  相似文献   

8.
This work demonstrates the stability and degradation of OSCs based on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′ benzothiadiazole)] (PCDTBT): (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) photoactive blend layers as a function of ageing time in air. Analysis of the stability and degradation process for the OSCs was conducted under ambient air by using current-voltage (I-V) measurements and x-ray photoelectron spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) was also investigated. Device stability was investigated by calculating decay in power conversion efficiency (PCE) as a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in one week of fabrication, which is attributed to indium and oxygen migration into the PEDOT:PSS and PCDTBT:PC71BM layer. Further, after aging for 1000 h, XPS spectra confirm the significant diffusion of oxygen into the HTL and photoactive layer which increased from 3.0 and 23.3% to 20.4 and 35.7% in photoactive layer and HTL, respectively. Similarly, the indium content reached to 17.9% on PEDOT:PSS surface and 0.4% on PCDTBT:PC71BM surface in 1000 h. Core-level spectra of active layer indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen present in the polymer matrix and formation of In2O3 due to indium diffusion. We also observed a steady fall in the optical absorption of the active layer during ageing in ambient air and it reduced to 76.5% of initial value in 1000 h. On the basis of these experimental results, we discussed key parameters that account for the degradation process and stability of OSCs in order to improve the device performance.  相似文献   

9.
Two anthracene‐based star‐shaped conjugated small molecules, 5′,5″‐(9,10‐bis((4‐hexylphenyl)ethynyl)anthracene‐2,6‐diyl)bis(5‐hexyl‐2,2′‐bithiophene), HBantHBT, and 5′,5″‐(9,10‐bis(phenylethynyl)anthracene‐2,6‐diyl)bis(5‐hexyl‐2,2′‐bithiophene), BantHBT, are used as electron‐cascade donor materials by incorporating them into organic photovoltaic cells prepared using a poly((5,5‐E‐alpha‐((2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,6‐[(1,5‐didecyloxy)naphthalene])) (PBTADN):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) blend. The small molecules penetrate the PBTADN:PC71BM blend layer to yield complementary absorption spectra through appropriate energy level alignment and optimal domain sizes for charge carrier transfer. A high short‐circuit current (JSC) and fill factor (FF) are obtained using solar cells prepared with the ternary blend. The highest photovoltaic performance of the PBTADN: BantHBT :PC71BM blend solar cells is characterized by a JSC of 11.0 mA cm?2, an open circuit voltage (VOC) of 0.91 V, a FF of 56.4%, and a power conversion efficiency (PCE) of 5.6% under AM1.5G illumination (with a high intensity of 100 mW?2). The effects of the small molecules on the ternary blend are investigated by comparison with the traditional poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) system.  相似文献   

10.
Ternary bulk heterojunctions (BHJs) are promising candidates that can improve the power conversion efficiencies (PCEs) of organic solar cells (OSCs). In this paper, a ternary OSC with two donors, including one wide bandgap polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), one low bandgap polymer Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th), and one acceptor [6,6]-phenyl C70 butyric acid methyl ester (PC70BM), is fabricated in atmospheric conditions. By incorporating a 20% content of PCDTBT, an optimized PCE of 7.86% for ternary OSC is characterized by a short-circuit current density (Jsc) of 15.21 mA cm−2, a fill factor of 69.70% and an open-circuit voltage (Voc) of 0.74 V. The Voc values increased steadily from 0.73 to 0.86 V as the increase of PCDTBT fraction, which indicates that the Voc of ternary OSC is not limited by the smallest one of the corresponding binary OSC. We show that the Jsc of the ternary OSC is better than those of the binary OSC in virtue of the complementary polymer absorption and cascade energy levels, as well as optimized morphology of the ternary system. Furthermore, the lifetime of the devices with PCDTBT is greatly enhanced. This work indicates that two donors (PTB7-Th/PCDTBT) ternary BHJs system provide a simple and effective method to improve the performance and also the stability of OSCs.  相似文献   

11.
《Organic Electronics》2014,15(2):543-548
To obtain high performance bulk heterojunction organic solar cells, the selection of solvents to prepare the donor/acceptor blend is as important as the choice of the donor/acceptor materials themselves. State-of-the-art lab-scale polymer solar cells have evolved around chlorinated solvents such as chloroform, chlorobenzene and o-dichlorobenzene. However, for large scale applications, benign processing solvents may become inevitable. In this work, we used a mixture of Xylenes (a chlorine-free solvent), methyl naphthalene (MeN) and 1,8-diiodoctane (DIO) to modulate the nano-scale morphology of poly(4,4-bis(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]silole-alt-1,3-(5-octylthieno[3,4-c]pyrrole-4,6-dione) (PDTSTPD)/PCBM blend, one of the most efficient active layer in polymeric solar cell. Power conversion efficiencies up to 5.5% (with PC61BM) and 6.2% (with PC71BM) were obtained for photovoltaic devices with an active area of 1.0 cm2.  相似文献   

12.
Solution-based NiOx outperforms PEDOT:PSS in device performance and stability when used as a hole-collection layer in bulk-heterojunction (BHJ) solar cells formed with poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) and PC70BM. The origin of the enhancement is clarified by studying the interfacial energy level alignment between PCDTBT or the 1:4 blended heterojunctions and PEDOT:PSS or NiOx using ultraviolet and inverse photoemission spectroscopies. The 1.6 eV electronic gap of PEDOT:PSS and energy level alignment with the BHJ result in poor hole selectivity of PEDOT:PSS and allows electron recombination at the PEDOT:PSS/BHJ interface. Conversely, the large band gap (3.7 eV) of NiOx and interfacial dipole (?0.6 eV) with the organic active layer leads to a hole-selective interface. This interfacial dipole yields enhanced electron blocking properties by increasing the barrier to electron injection. The presence of such a strong dipole is predicted to further promote hole collection from the organic layer into the oxide, resulting in increased fill factor and short circuit current. An overall decrease in recombination is manifested in an increase in open circuit voltage and power conversion efficiency of the device on NiOx versus PEDOT:PSS interlayers.  相似文献   

13.
The effects of different polar solvents on the performance of solvent vapor annealing treated polymer solar cell (PSC) with a structure of ITO/ZnO/PTB7: PC71BM/MoO3/Ag was systematically investigated by applying different polar solvents, including methanol, ethanol, dimethylsulfoxide, acetone and isopropanol. By analyzing the variation of PSC performance and the morphology of active layer, we found that both the solubility parameters (Δ) and viscosity of solvent were playing an important role in controlling the morphology of PTB7: PC71BM blend. Especially, the PSC treated by methanol with high Δ and low viscosity exhibited a remarkable enhancement of power conversion efficiency from 6.55% to 8.13%. The performance improvement was mainly due to the formation of the nanoscale crystallization of PTB7: PC71BM blend and the moderated aggregation of PC71BM, resulting in efficient charge separation, balanced charge transport and suppressed charge recombination.  相似文献   

14.
We have explored the effect of a range of different cathode materials on the power conversion efficiency of organic (polymer) solar cells based on a blend of the conjugated polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) with the fullerene acceptor PC70BM. We use a transfer matrix reflectivity model to quantify the optical properties of the cathode and the device structure on its operational efficiency and compare this with the results of experimental measurements. We show that both optical and electrical effects play a role in determining overall device efficiency through their impact on short-circuit current, open circuit voltage and fill-factor. We use our model to demonstrate that devices composed of a thin (60–70 nm) active semiconductor layer and a composite cathode composed of a 5 nm thick layer of calcium capped by aluminium combine low optical loss and improved charge extraction and optimised power conversion efficiency.  相似文献   

15.
Innovating molecular structure of copolymer donor materials is still one of the prominent approach to obtain high-performance polymer solar cells (PSCs). In this paper, two novel wide bandgap (WBG) copolymers, namely PBDTTS-IQ and PBDTTS-DFIQ, based on asymmetric planar aromatic core indo [( Li et al., 2012; Wang et al., 2020) 2,32,3-b]quinoxaline (IQ) as acceptor unit through tuning side chains with fluorine (F) atom engineering and exemplary alkylthio-thienyl substituted benzodithiophene (BDTTS) donor group, are synthesized and finally employed as the photovoltaic donor materials for fullerene polymer solar cells (PSCs). After blending with PC71BM acceptor, the PBDTTS-DFIQ:PC71BM blend film presented better efficient exciton dissociation and charge extraction, more balanced electron/hole mobility (μh/μe), and nice morphology in comparison with PBDTTS-IQ:PC71BM blend film. Encouragingly, the PBDTTS-DFIQ:PC71BM based PSCs exhibits a higher power conversion efficiency (PCE) of 7.4% than that of the device based on the PBDTTS-IQ:PC71BM blend with a PCE of 4.96%, which thanks to an enhancement of open-circuit voltage (Voc) of 0.84 V, short current density (Jsc) of 13.26 mA cm−2 and fill factor (FF) of 66.00% simultaneously. These results demonstrate that this asymmetric IQ framework is a wonderful acceptor moiety to build light-harvesting copolymers for highly efficient PSCs.  相似文献   

16.
We report the synthesis, characterization and photovoltaic properties of bulk heterojunction polymer solar cells of new donor–acceptor conjugated copolymers P(PTQD-Th) and P(PTQD-2Th) that incorporate same strong 9-(2-octyldodecyl)-8H-pyrrolo[3,4-b]bisthieno[2,3-f:3′,2′-h]quinoxaline-8,10(9H)-dione as strong acceptor and different weak thiophene (Th) and bi-thiophene (2Th) as donors, respectively. Both the copolymers showed suitable unoccupied lowest molecular orbital (LUMO) energy levels, compatible with the LUMO of PC71BM for efficient electron transfer from copolymer to PC71BM in the blended copolymer: PC71BM thin films. Moreover the deeper highest occupied molecular orbital (HOMO) energy levels of both copolymers ensures the high open circuit voltage (Voc) of the BHJ polymer solar cells. The optimized P(PTQD-Th):PC71BM and P(PTQD-2Th):PC71BM with weight ratio of 1:2 processed with chloroform solvent showed PCE of 3.65% and 3.96%, respectively. The higher value of Jsc for the device processed with P(PTQD-2Th):PC71BM as compared to that for P(PTQD-Th):PC71BM, attributed to narrower optical bandgap and broader absorption profile for P(PTQD-2Th) as compared to P(PTQD-Th). The PCE values of polymer solar cells were further improved (5.54% and 5.67% for P(PTQD-Th):PC71BM and P(PTQD-2Th):PC71BM, respectively) when small amounts of solvent additive, i.e. 1,8-diiodoctane (DIO) were used for the processing of active layers. The improved PCE has been attributed to both the enhanced values of short circuit current (Jsc) and fill factor (FF) due to the better nanomorphology and charge transport, induced by the high boiling point of solvent additive.  相似文献   

17.
Bimolecular charge carrier recombination in blends of a conjugated copolymer based on a thiophene and quinoxaline (TQ1) with a fullerene derivative ((6,6)‐phenyl‐C71‐butyric acidmethyl ester, PC71BM) is studied by two complementary techniques. TRMC (time‐resolved microwave conductance) monitors the conductance of photogenerated mobile charge carriers locally on a timescale of nanoseconds, while using photo‐CELIV (charge extraction by linearly increasing voltage) charge carrier dynamics are monitored on a macroscopic scale and over tens of microseconds. Despite these significant differences in the length and time scales, both techniques show a reduced Langevin recombination with a prefactor ζ close to 0.05. For TQ1:PC71BM blends, the ζ value is independent of temperature. On comparing TRMC data with electroluminescence measurements it is concluded that the encounter complex and the charge transfer state have very similar energetic properties. The ζ value for annealed poly(3‐hexylthiophene) (P3HT):(6,6)‐phenyl‐C61‐butyric acid methyl ester (PC61BM) is approximately 10?4, while for blend systems containing an amorphous polymer ζ values are close to 1. These large differences can be related to the extent of charge delocalization of opposite charges in an encounter complex. Insight is provided into factors governing the bimolecular recombination process, which forms a major loss mechanism limiting the efficiency of polymer solar cells.  相似文献   

18.
High performance, hysteresis-free, low temperature n-i-p perovskite solar cells are successfully fabricated by solution processing using fullerene electron transport layer (ETL). PC71BM fullerene, with broader absorption spectrum and lower HOMO level, when incorporated in the perovskite solar cell yielded average power conversion efficiency (PCE) of 13.9%. This is the highest reported PCE in n-i-p perovskite solar cells with PC71BM ETL. The devices exhibited negligible hysteresis and high open-circuit voltage (Voc). On the contrary, devices with PC61BM, a common fullerene ETL in perovskite solar cell, exhibited large hysteresis and lower Voc. The underlying mechanisms of superior performance of devices with PC71BM ETL were found to be correlated with fullerene surface wettability and perovskite grain size. The influence of fullerene ETL on the perovskite grain growth and subsequent photovoltaic performance was investigated by contact angle measurement, morphological characterization of the surface topography and electrochemical impedance analysis.  相似文献   

19.
《Organic Electronics》2014,15(5):1035-1042
We report the development and application of high-quality zinc oxide nanoparticles (ZnO NPs) processed in air for stable inverted bulk heterojunction solar cells as an electron extraction layer (EEL). The ZnO NPs (average size ∼11 nm) were dispersed in chloroform and stabilized by propylamine (PA). We demonstrated that the ZnO NP dispersion with 4 vol.% of PA as stabilizer can be used in air directly and remains clear up to one month after preparation. Our inverted solar cells consisted of a blade-coated poly(N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (1: 4 by weight) active layer sandwiched between a ZnO electron extraction layer and a MoO3/Ag anode. All solar cells with ZnO films fabricated in air using PA-stabilized ZnO dispersions prepared within a time window of one month exhibited power conversion efficiencies (PCE) above 4%. In contrast, if the ZnO film was prepared in air using regular un-stabilized ZnO NP dispersion, the PCE would drop to 0.2% due to poor film quality. More interestingly, X-ray photoelectron spectroscopy and nuclear magnetic resonance measurements indicated that the PA ligands were not covalently bonded to ZnO NPs and did not exist in the deposited ZnO films. The spin-cast ZnO thin films (without any thermal treatment) are insoluble in organic solvents and can be directly used as an EEL in solar cells. This feature is beneficial for fabricating organic solar cells on flexible polymer substrates. More importantly, our non-encapsulated inverted solar cells are highly stable with their PCEs remaining unchanged after being stored in air for 50 days.  相似文献   

20.
A comprehensive study of the effect of oxide interlayer on the performance of bulk-heterojunction organic solar cells (OSCs), based on poly[[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b'] dithiophene-2,6- diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7): [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) blend system, is carried out by optical simulation, interfacial exciton dissociation and charge collection analyses. It is found that a PTB7:PC70BM blend layer thickness optimized for maximum light absorption in OSCs does not generally give rise to the highest power conversion efficiency (PCE). OSCs, e.g., based on PTB7:PC70BM blend system, can benefit from the oxide interlayer in two ways, (1) to enhance the built-in potential for reducing recombination loss of the photo-generated charges, and (2) to improve charge collection by removal of unfavorable interfacial exciton dissociation. The combined effects result in ∼20% improvement in PCE over an optimized control cell, having an identical layer configuration without an oxide interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号