首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L. Flander  T. Suortti  K. Katina  K. Poutanen 《LWT》2011,44(3):656-664
The aim of this work was to study the effects of sourdough fermentation of wheat flour with Lactobacillus plantarum, on the quality attributes of mixed oat-wheat bread (51 g whole grain oat flour and 49 g/100 g white wheat flour). Emphasis was laid both on β-glucan stability as well as bread structure and sensory quality. The variables of the sourdough process were: dough yield (DY), fermentation time, fermentation temperature, and amount of sourdough added to the bread dough. The sourdough process was shown to be a feasible method for mixed oat-wheat bread, and, when optimized, provided bread quality equal to straight dough baking. A small amount (10g/100 g dough) of slack sourdough fermented at high temperature for a long time resulted in the most optimal sourdough bread with the highest specific volume (3.5 cm3/g), the lowest firmness after 3 days storage (0.31 kg), and low sensory sourness with high intensity of the crumb flavour. Wheat sourdough parameters did not affect the content of oat β-glucan in the bread. Additionally, both straight dough and sourdough bread contained 1.4-1.6 g β-glucan/100 g fresh bread. The average molecular weight of β-glucan was 5.5 × 105 in both types of bread, while that of oat flour was 10 × 105. This indicates that a slight degradation of β-glucan occurred during proofing and baking, and it was not affected by variation in the acidity of the bread between pH 4.9-5.8.  相似文献   

2.
The physical, sensory and microbiological properties of wheat-fermented unripe plantain composite flour bread were studied. Mature unripe plantain was peeled, sliced, steam blanched, dried and milled into flour. The flour was made into a slurry (10 g of flour/3 ml of water) and allowed to ferment for 24 h. It was then dried, pounded and sieved through 0.25 mm sieve. The fermented unripe plantain flour was then blended with wheat flour in the ratios of (wheat:fermented unripe plantain) 100:0; 90:10; 80:20; 70:30; and 60:40. Bread was produced from the flour blends using the straight dough method. Loaf weight and volume decreased significantly (p < 0.05) with increasing levels of plantain flour inclusion. Sensory evaluation of the flour samples revealed significant differences in the ratings for crumb colour and texture between 100% wheat flour (100:0) and 60% wheat-40% fermented unripe plantain flour (60:40) bread but no significant difference was observed between all bread samples with respect to crust colour, taste, aroma and overall acceptability. The sensory scores showed that all the bread samples were acceptable. Microbiological analysis (total viable count) revealed that all the bread samples were free of microorganisms for up to four days after production.  相似文献   

3.
This investigation is aimed at developing a new cereal-based product, with increased nutritional quality, by using Bifidobacterium pseudocatenulatum ATCC 27919 as starter in whole wheat sourdough fermentation and evaluating its performance. Four different sourdough levels (5%, 10%, 15%, and 20% on flour basis) in bread dough formulation were analysed. The effects of the use of bifidobacteria in sourdough bread were comparatively evaluated with controls (yeast and/or chemically acidified sourdough with antibiotics). The sourdough and dough fermentative parameters analysed were pH, total titratable acidity, d/l-lactic and acetic acids. Bread performance was evaluated by specific volume, slice shape, crumb structure and firmness, crust and crumb colour, pH, total titratable acidity, and d/l-lactic and acetic acids, phytate, and lower myo-inositol phosphate contents. The sourdough breads showed similar technological quality to the control sample, with the exception of specific bread volume (decreased from 2.46 to 2.22 mL/g) and crumb firmness (increased from 2.61 to 3.18 N). Sourdough inoculated with bifidobacteria significantly increased the levels of organic acids in fermented dough and bread. The Bifidobacterium strain contributed to the fermentation process, increasing phytate hydrolysis during fermentation owing to the activation of endogenous cereal phytase and its own phytase, resulting in bread with significantly lower phytate levels (from 7.62 to 1.45 μmol/g of bread in dry matter). The inclusion of sourdough inoculated with bifidobacteria made possible the formulation of whole wheat bread with positive changes in starch thermal properties and a delay and decrease in amylopectin retrogradation.  相似文献   

4.
The impact of addition of gelatinized rice porridge to bread has been investigated on loaf volume, viscoelastic properties and air-bubble structure. We prepared four variety of bread: bread containing rice porridge (rice porridge bread), bread containing gelatinized rice flour (gelatinized rice flour bread), and wheat flour and rice flour breads for references. Instrumental analyses the bread samples were carried out by volume measurement of loaf samples, creep test and digital image analysis of crumb samples. Rice porridge bread showed the maximum specific volume of 4.51 cm3/g, and even gelatinized rice flour bread showed 4.30 cm3/g, which was larger than the reference bread samples (wheat and rice flour breads). The values of viscoelastic moduli of gelatinized rice flour bread and rice porridge bread were significantly smaller (p < 0.05) than those of wheat flour and rice flour breads, which indicates addition of gelatinized rice flour or rice porridge to bread dough encouraged breads softer. Bubble parameters such as mean air- bubble area, number of air-bubble, air-bubble area ratio (ratio of bubble area to whole area) were not significantly different among the bread crumb samples. Therefore, the bubble structures of the bread samples seemed to similar, which implied that difference of viscoelasticity was attributed to air-bubble wall (solid phase of bread crumb) rather than air-bubble. This study showed that addition of gelatinized rice to bread dough makes the bread with larger loaf volume and soft texture without additional agents such as gluten.  相似文献   

5.
This study investigates the exploitation of buckwheat sourdough for the production of wheat bread. The fermentation induced extensive hydrolysis of buckwheat main storage proteins, but did not influence the total protein, starch and polyphenols content of buckwheat. Buckwheat sourdough was incorporated at 10 and 20?% (w/w) in wheat dough, and control doughs were produced with the addition of a chemically acidified (CA) buckwheat batter. The addition of buckwheat sourdough greatly affected the rheological properties of the dough, by inducing a strengthening of the gluten network and decrease in elasticity. The acidification of wheat dough also stimulated the baker’s yeast activity during proofing, resulting in higher release of CO2 in shorter times (volume of CO2 released (ml), control dough, 1,671.5; dough with 10?% sourdough, 2,600; dough with 10?% chemically acidified dough, 2,715.5). The properties of wheat bread were enhanced by the addition of 10?% buckwheat sourdough, which led to higher specific volume (control, 3.41?ml/g; bread with 10?% sourdough, 4.03?ml/g) and softer crumb (crumb hardness, control, 5.28?N; bread with 10?% sourdough, 3.93?N). On the other hand, the higher acidification level did not influence the bread volume, but slightly hardened the crumb (crumb hardness, bread with 20?% sourdough, 7.41?N; bread with 20?% chemically acidified dough, 6.48?N). The fermentation positively influenced the nutritional properties of buckwheat flour and wheat bread, in terms of polyphenols (control bread, 8.84?mg GAE/100?g; bread with 10 and 20?% sourdough, 17.83 and 18.20?mg GAE/100?g, respectively) and phytic acid contents. Incorporation of buckwheat sourdough also led to an extension in the shelf life of wheat bread, which became more evident for the higher addition level. Overall, the results of this study suggest that buckwheat sourdough represents a suitable tool for enhancing the overall quality and nutritional properties of wheat bread.  相似文献   

6.
7.
Effects of sourdough and enzymes on staling of high-fibre wheat bread   总被引:1,自引:0,他引:1  
The effects of sourdough and enzyme mixture (α-amylase, xylanase and lipase) on the specific volume, staling and microstructure of wheat pan bread supplemented with wheat bran were studied. Staling of bread was followed for 6 days by measuring the crumb firmness, changes in crystallization of amylopectin (DSC), increase in signal from the solid phase (NMR) and by light microscopy. The most effective treatment in improvement of quality was the combination of bran sourdough and enzyme mixture. During storage the rate of changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were greatest for the white wheat bread. The most pronounced microstructural changes were swelling of starch granules and separation of amylose and amylopectin in the starch granules. Least changes in crumb firmness, amylopectin crystallinity and rigidity of polymers were observed in bran sourdough bread with enzymes. In contrast to white wheat bread, the starch granules were very much swollen in bran sourdough bread with enzyme mixture. This was hypothesized to be due to the higher water content of bran bread, and degradation of cell wall components leading to altered distribution of water among starch, gluten and bran particles during storage.  相似文献   

8.
K. Katina  R.-L. Heiniö  K. Autio  K. Poutanen 《LWT》2006,39(10):1189-1202
The aim of the study was to determine optimum sourdough process conditions for improved flavour and texture of wheat bread. The influence of process conditions and the starter culture on the characteristics of wheat sourdough bread was established by using response surface methodology. Influence of fermentation temperature (16-32 °C), ash content of flour (0.6-1.8 g/100 g), and fermentation time (6-20 h) were considered as independent factors and their effects were studied in sourdough bread fermented with Lactobacillus plantarum, Lactobacillus brevis, Saccharomyces cerevisiae or with a combination of yeast and lactic acid bacteria. Intensity of sensory attributes, specific volume and bread hardness were considered as the main responses. Ash content of flour and fermentation time were the main factors determining the intensity of sensory attributes. The possibility to enhance intensity of overall flavour, aftertaste and roasted flavour without excessive pungent flavour and without reduced fresh flavour in wheat bread containing 20 g sourdough/100 g of wheat dough was demonstrated by choosing e.g. Lb. brevis for a starter and by utilization of high ash content of flour, long fermentation time and reduced temperature. Bread specific volume was improved 0.2-0.5 ml/g and hardness was reduced (after 4 days of storage) up to 260 g by using low ash content of flour and by optimizing fermentation time according to the microbial strain. Lactic acid fermentation had more profound influence on both desired and undesired flavour attributes, as well as textural features of bread in comparison with yeast fermentation.  相似文献   

9.
A method based on microbial re-inoculation, or the so-called backslopping and subsequent proofing of rye bread dough simulating commercial one-stage sourdough process, was used for the screening of the leavening capacity of sourdough yeast strains. Two yeast strains were initially tested with seven Lactobacillus strains. Thereafter, 17 yeast strains, mostly of sourdough origin, were tested with a backslopping procedure with heterofermentative Lactobacillus brevis as an acidifying lactic acid bacteria (LAB). The highest leavening capacity was found in sourdoughs containing Candida milleri, in particular when it was accompanied by obligately homofermentative Lactobacillus acidophilus or facultatively heterofermentative Lactobacillus plantarum when it acted homofermentatively. The leavening capacity of the reference strain Saccharomyces cerevisiae was about half that of C. milleri in all sourdoughs tested. The re-inoculation procedure increased the differences found in the leavening capacity of the tested yeast strains during final proofing of rye bread dough. The backslopped sourdoughs containing a heterofermentative Lactobacillus strain were more suppressive than those containing a homofermentative strain. The highest leavening capacity was found in C. milleri strains. The use of one backslopping cycle before assaying the leavening capacity of a laboratory sourdough is recommended since it helps to differentiate between yeast strains to be tested for their leavening power in the final bread dough.  相似文献   

10.
This study evaluated the effects of substituting wheat flour with defatted Jack bean flour and Jack bean protein concentrate on bread quality. Jack bean flour milled from the seed nibs was defatted with n-hexane and part of the defatted flour (DJF) extracted in acid medium (pH; 4.5) for protein concentrate (JPC). Both the DJF and JPC were analysed for nutrient composition, and then used to fortify bread. Five bread samples with 0%, 10% and 20% of DJF or JPC were prepared using straight dough procedure, and then analysed for quality characteristics. The DJF and JPC had 28.8% and 49.47% protein, 46.44% and 30.22% carbohydrate, 0.61% and 1.00% crude fibre respectively; and were rich in Ca, Fe, Zn and P. Both DJF and JPC improved quality of bread but JPC conferred better quality. The 20% DJF and JPC respectively improved protein content of bread from 9.45% to 10. 97% and 11.16%, crude fibre from 2.39% to 5.20% and 5.32%, fat from 2.35% to 7.00% and 6.55%, and ash content from 1.35% to 2.05% and 2.10% but decreased carbohydrate content from 72.12% to 50.45% and 50.39% in the bread samples. All the fortified bread samples had acceptable crumb colour, crumb texture, flavour and loaf volume significantly comparable (p > 0.05) to those of 100% wheat bread. Thus, defatted Jack bean flour and Jack bean protein concentrate is recommended for use in fortifying bread for higher quality.  相似文献   

11.
Einkorn wheat (Tm, Triticum monococcum L.) has nutritional characteristics that clearly distinguish it from common wheat (Ta, Triticum aestivum L.) although its rheological dough properties may be less‐performing. Therefore, to better understand the potential of Tm for human consumption and food preparation, we compared the quality of bread baked with ancient einkorn and common wheat leavened with brewer's yeast and sourdough. Results showed that Tm had generally higher firmness (21.6 N vs. 10.5 N), and lower (65.6% vs. 71.2%) and less homogeneous porosity than Ta. These results suggest a minor potential in bread‐making regardless of the Tm high total protein content and underline a weaker gluten ability to expand and retain the fermentation gas. The selection of best‐performing einkorn varieties and leavening agents (e.g. fresh sourdough) can lead to bread products with acceptable texture features, meeting consumer demand for organic, natural and ancient products.  相似文献   

12.
The optimisation of the quantity of sourdough (A) prepared with two different fermentation methods, [spontaneous fermentation (F1) vs. starter of lactic acid bacteria‐added fermentation (F2)], instant active dry yeast (B) and wheat bran (C) for a nutritionally improved bread formulation has been studied by evaluating the bioavailability and bioactive properties. The bread produced according to the optimised formula and fermentation types of F1 (OBF1) and F2 (OBF2) was compared with control bread (CB). The optimised levels for F1 were 11.45% for sourdough, 1.10% for dry yeast and 1.58% for wheat bran and for F2 6.99% for sourdough, 1.02% for dry yeast and 38.84% for wheat bran. The addition of sourdough significantly (< 0.05) affected antioxidant activity, total phenolic content, in vitro ash and protein digestibility, and enzyme resistance starch contents of bread. The F1 fermentation method was found to be more effective in terms of bread properties examined.  相似文献   

13.
The rheological characteristics of twenty wheat flour samples obtained from four organic flour blends and a non-organic control were compared in relation to their ability to predict subsequent loaf volume in the baked bread. The flour samples considered had protein contents that varied between 11–14 g/100 g. Four different rheological methods were employed. Oscillatory stress rheometry on the protein gel extracted from the wheat flour, oscillatory stress rheometry and creep measurement on undeveloped dough samples and biaxial extensional measurements on simple flour–water doughs. None of the fundamental rheological parameters correlated with loaf volume. There was a correlation between the storage modulus of the gel protein and storage modulus for the undeveloped dough (r = 0.85). There was a weak negative correlation between protein content and biaxial extensional viscosity (r = −0.62). Stepwise multiple regression related loaf volume to dough stability time (measured on the Farinograph) and tan (phase angle) for the undeveloped dough samples (overall model r2 = 0.54). The results indicate that the four rheological tests considered could not be used as predictors of subsequent loaf volume when the bread is baked.  相似文献   

14.
The effect of partial substitution of sugar with liquid honey on the pasting properties of cooked dough made from cassava-wheat composite (10:90) flour as well as the sensory preference and shelf stability of its bread was investigated. Sucrose (S) in the bread recipe formulation was substituted with honey (H) at levels 0, 10, 20, 30, 40 and 50%, respectively to give 6 treatments, namely 0H:100S, 10H:90S, 20H:80S, 30H:70S, 40H:60S and 50H:50S. Amylograph pasting properties of the dried crumbs were determined using standard analytical procedures. Fresh bread samples were subjected to sensory evaluation and fungal count during storage (6 days). Peak, final and setback viscosities of bread crumb decreased (32.29 to 25.33, 58.54 to 43.00 and 30.96 to 23.66 RVU), respectively as the level of honey inclusion increased. Honey substitution levels used did not significantly (p > 0.05) affect aroma and texture of the bread samples but composite bread with 20% level of honey substitution was most preferred in terms of colour while composite bread with 30% level of honey substitution was most acceptable in terms of taste and overall acceptability. Fungal count in stored honey-cassava-wheat bread varied significantly (p < 0.05) from 0.6 to 4.0 × 102, 1.0 to 6.9 × 102, 2.2 to 57.0 × 102, 32.0 to 135.7 × 102, 34.0 to 140.0 × 102 and 42.0 to 159.3 × 102) cfu/ml from day 1 to day 6, respectively. From the study, it was concluded that substitution of sugar with honey in dough formulations significantly (p < 0.05) affects dough pasting properties, improves acceptability of the composite bread and reduces staling rate.  相似文献   

15.
Partially baked frozen (PBF) process prolongs bread shelf life, but diminishes its volume and crumb texture. Therefore, we investigated the possibility of using sourdough for the quality improvement in PBF wholewheat bread. Sourdough was fermented with either Lactobacillus plantarum, Lb. brevis or Leuconostoc mesenteroides mixed with yeast Candida humilis and added at 7.5, 15, 22.5 or 30% on bread dough basis. The choice of sourdough starter significantly affected bread acidity characteristics, flavour, specific volume, shape and crumb firmness. The sourdough amount and acetic acid content of bread inversely correlated to flavour score, specific volume, shape and crumb softness. The overall quality of PBF wholewheat bread was most efficiently improved after adding Lb. plantarum sourdough at 15–22.5%, resulting in retarded firming rate (74–94%) and improved specific volume (25–28%) in comparison with PBF bread without sourdough. Such sourdough has lactic to acetic acid higher than previously recommended for traditional sourbreads.  相似文献   

16.
Changes in the free ferulic acid (FFA) contents and antioxidant properties during bread making processes were determined. Experimental breads were produced from whole meal and white wheat and rye flours, and fermented using either baker’s yeast or sourdough starter. Sourdough fermented bread contained the highest content of FFA. Release of occurred mainly during dough fermentation. A further increase in the ferulic acid content in the bread crumb and a decrease in the crust was observed. Total antioxidant properties of sourdough bread, defined as the sum of lipophilic and hydrophilic compound activities, were significantly (p<0.05) higher than for yeast bread. Sourdough bread contained more methanol soluble phenolic compounds, proteins, tocochromanols, and oxidized products of fatty acids than yeast bread. The equilibrium between the anti- and pro-oxidative compound contents resulted in similar antioxidant properties for bread using both types of fermentation, and to results observed for the flour used for baking.  相似文献   

17.
Response surface methodology was used to investigate the influence of three factors, sourdough fermentation time, proof time and amount of yeast addition on the quality of sourdough wheat bread. Each predictor variable was tested at five levels. Sourdough fermentation times were 5, 11, 20, 29 and 35 h, yeast addition rates were 0.05, 0.75, 1.77, 2.80 and 3.50% (flour weight basis) and proof times were 16, 40, 75, 110 and 134 min. The performance of two different starter culture types, a mixed strain starter culture called Böcker Reinzucht–Sauerteig Weizen and a single strain starter culture of Lactobacillus brevis, was compared by separately completing the experimental design for each. Independently non-acidified control bread was prepared. A range of loaf quality parameters was determined including pH, total titratable acidity, loaf height, specific volume, crumb mean cell area and crumb hardness. Overall breads with better specific volume values were achieved with the use of sourdough relative to the control. Results indicated that maximum loaf specific volume was achieved when L. brevis sourdough was used particularly when it was used in conjunction with a high rate of yeast. Given a lower rate of yeast addition however, the mixed strain starter culture yielded better bread.  相似文献   

18.
《LWT》2003,36(6):609-614
The objective of this project was to study the influence of yeast and vegetable shortening on physical and textural parameters of frozen part baked French bread stored for 28 days and to produce a frozen part baked bread with physical and textural characteristics similar to those of the fresh one. Four formulations were used with different quantities of yeast and vegetable shortening. Dough was prepared by mixing all ingredients in a dough mixer at two speeds. After resting, the dough was divided into 60 g pieces, molded and proofed. The bread was partially baked for 7 min at 250°C, in a turbo oven. After cooling, it was frozen until the core temperature reached −18°C and stored at the same temperature up to 28 days. Once a week, samples were removed from the freezer to complete the baking process, without previous thawing. Mass, volume, water content, firmness, cohesiveness and springiness were measured 1 h after final baking. Resistance to extension and extensibility of dough were measured after mixing. Specific volume and chewiness were determined. Bread with higher yeast content presented a higher specific volume, whereas vegetable shortening reduced its crumb firmness and chewiness.  相似文献   

19.
Native and lyophilized kefir grains were added directly to bread dough or as a starter in sourdough. Because of inadequate leavening activity of kefir, yeast‐leavened breads were prepared. Kefir addition influenced the quality attributes and the shelf life of wheat bread. The pH of bread containing kefir decreased as compared to that in the control bread. The acidity of bread with kefir increased as compared to that in the control bread. An addition of kefir grains, regardless of the form, lowered the bread volume and increased the mold‐free shelf life from 4 (control) to 5–7 days. The addition of kefir grains in bread dough contributed to a milder taste, a more delicate yogurt‐like or dairy aroma. The breads made with sourdoughs containing native or lyophilized kefir grains scored higher for crumb quality number than breads made by directly adding kefir grains.  相似文献   

20.
Determination of the bubble size distribution at the end of mixing and controlling its changes are the basis for improving bread quality before it is fully manufactured. X-rays from a synchrotron source (Biomedical Imaging and Therapy beamline, Canadian Light Source) were used to rapidly characterize the bubble size distribution and its evolution in non-yeasted dough subsamples as a function of time for 3 h following mixing. A complete X-ray microtomography scan was completed within 120 s. The higher number density of bubbles in dough compared to results previously reported in the literature was attributed to the better contrast and higher resolution (smaller pixel size, 8.75 μm) of the reconstructed X-ray images generated from synchrotron X-rays. The bubble size distribution was very well characterized with a lognormal distribution function. This distribution had a median bubble radius of 22.1 ± 0.7 μm at 36 min after the end of mixing which increased to 27.3 ± 0.7 μm over 162 min, a trend indicative of transport of gas in the dough due to disproportionation. This is the first time disproportionation in non-yeasted wheat flour doughs has been monitored directly under bulk conditions relevant to dough in bakery conditions. These results show that the diffusion-driven dynamics of bubbles in non-yeasted bread doughs can be followed by X-rays from a synchrotron source via feature extraction using image analysis software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号