首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathodic photocurrents are observed when a film of the neutral form of polypyrrole-dodecylsulphate (PPy-DS), is illuminated in an electrochemical cell. This photocurrent depends on the film thickness. The variation of charge and current in the electrochemical synthesis produces films with different densities and surface morphologies, as observed by SEM. Irradiation from the electrolyte side with monochromatic light produces an action spectrum that matches the absorption spectrum of PPy-DS. Optically transparent substrate side irradiation shifts the maximal photocurrent value to longer wavelengths and promotes a general diminution of the photocurrent values. These results are in agreement with previous results obtained in our laboratory for Poly(3-methyl-thiophene) (Micaroni and De Paoli, Sol. Energy Mater. Sol. Cells 43 (1996) 79) and are interpreted in terms of the models used for solid and nanostructured semiconductors.  相似文献   

2.
We carried out a detailed optimization of P3HT:PCBM polymer solar cells by variation of blending ratio, film thickness and annealing conditions. From our studies it became evident that the film thickness and the fullerene concentration are mutually dependent parameters, what the overall performance concerns. In detail, we revealed a clear relationship between film thickness, PCBM concentration and the blend film morphology. We varied the PCBM concentration in our polymer solar cells between 25% and 50%, and found the best results for 33.3% of PCBM. In this case, the optimum between competing processes like effective charge carrier separation and percolation path establishment was realized. In thicker films, the growth of PCBM aggregates via phase separation leads to formation of percolation paths and therefore improves the photocurrent. In contrast, for thinner films a high PCBM concentration is favourable to achieve optimal efficiencies.  相似文献   

3.
Cr-doped-TiO2 thin films, with three different Cr concentrations (2, 5.5, and 9 at.%), have been synthesized by radio-frequency magnetron sputtering in order to sensitize TiO2 in visible light. UV–visible spectra showed that maximum narrowing (2.1 eV) of the TiO2 band gap is obtained for the highest Cr concentration. However, negligible photocurrent was measured with Indium Tin Oxide (ITO)/Cr-doped-TiO2 (9 at.%) single bilayer sample due to the increased recombination rate of the photo-generated charges on the defects associated to the Cr3+ ions. To lower the charge recombination rate in the Cr-doped-TiO2, multilayer films with different numbers of ITO/Cr-doped-TiO2 (9 at.%) bilayers (namely, 3-, 4-, 5-, 6- and 7-bilayers) were deposited by keeping the total thickness of TiO2 constant in each multilayer film. When the multilayer films were exposed to visible light, we observed that the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/Cr-doped-TiO2. The enhanced photocurrent is attributed to: 1) higher absorption of visible light by Cr-doped-TiO2, 2) number of space charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space charge layer by decreasing the Cr-doped-TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by studying the photocurrent kinetic curve. The superior photocatalytic efficiency of the 6-bilayers film implies higher hydrogen production rate through water-splitting: we obtained indeed 24.4 μmol/h of H2 production rate, a value about two times higher than that of pure TiO2 (12.5 μmol/h).  相似文献   

4.
In order to sensitize TiO2 in visible light and to reduce photo-induced charge recombination, the multilayer films of Indium-Tin Oxide (ITO)/V-doped TiO2 were synthesized by radio-frequency magnetron sputtering. V-doped TiO2 thin films showed red shift in TiO2 absorption edge with increasing dopant concentration and, most importantly, the dopant energy levels are formed in the TiO2 band gap due to V5+/V4+ ions as confirmed by UV-Visible and XPS spectra. Multilayer films with different numbers of ITO/V-doped TiO2 (6 at.%) bilayers (namely, 2-, 3-, 4-, 5-, 6- and 7-bilayers) were deposited, in order to reduce the charge recombination rate, by keeping the total thickness of TiO2 constant in each multilayer film. In multilayer films, when exposed to visible light the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/V-doped TiO2. The measured enhanced photocurrent is attributed to: 1) ability of V-doped TiO2 to absorb visible light, 2) number of space-charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space-charge layer by decreasing the V-doped TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by the photocurrent kinetic curves. The superior photocatalytic efficiency of the 6-bilayers film is also reflected in hydrogen production rate through water-splitting: we obtained indeed 31.2 μmol/h of H2 production rate.  相似文献   

5.
Carbon-doped tungsten trioxide (WO3) films were produced using a spray-pyrolysis methodology, with glucose used as the carbon dopant source. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis, scanning electron microscopy, and solid-state nuclear magnetic resonance. The photoelectrochemical activity was evaluated under near UV–visible light and visible light only irradiation conditions. The presence of carbonate-type species in the C-doped sample was confirmed by XPS and SSNMR. The C-doped WO3 electrodes exhibited photocurrent densities up to 1.6 mA/cm2 in 1 M HCl electrolyte and as high as 2.6 mA/cm2 with the addition of methanol as a sacrificial agent. A high contribution (∼50%) of the photocurrent density was observed from visible light. C-doped WO3 produced approximately 50% enhanced photocurrent densities compared with the undoped WO3 electrode synthesized using the same procedures. The photoelectrochemical performance was optimized with respect to several synthetic parameters, including dopant concentration, calcination temperature and film thickness. These results indicate the potential for further development of WO3 photocatalysts by simple wet chemical methods, and provide useful information towards understanding the structure and enhanced photoelectrochemical properties of these materials.  相似文献   

6.
《Journal of power sources》2006,160(1):548-557
Passive films on highly oriented pyrolytic graphite (HOPG) lithiated in siloxane-based electrolytes were investigated. Microanalysis and electrochemical impedance spectroscopy (EIS) were employed to understand the effects of siloxane molecular structure on film morphology and electrochemical properties. In the experiments, the numbers of silicon and ethylene oxide (EO) side chain groups on the siloxane molecule were varied, and a methylene group was also attached. The morphological and electrochemical properties of the passive film depended strongly on the siloxane molecule structure. The surface morphology of the passive film was similar to films formed in a carbonate electrolyte. However, after lithiation in a siloxane-based electrolyte having two silicones, one EO group, and a spacer group (named 2SM3), no gel-like film was formed. The silicon and oxygen concentrations on HOPG edge planes were greater than on the basal plane, and were reduced for the electrolyte with the 2SM3 spacer group. Conductivity decreased in the range of 1.7–2.0 V for all electrolytes. The film resistance and the charge transfer resistance of 2SM3 were the most constant over 0–0.5 V, the practical potential range for graphite electrodes in lithium secondary batteries. The results indicate that 2SM3 was well-suited for use as an electrolyte for lithium batteries.  相似文献   

7.
Hydrogen, derived from solar-water splitting, is a clean and renewable fuel for which per gram energy storage capacity is even higher than fossil fuels. Towards the development of a viable technology for above conversion, this report describes enhanced performance in photoelectrochemical water splitting using uniquely evolved nano-hetero-structured bilayered thin films, CuO/Ru–ZnO as photoanode. Grown over ITO (In:SnO2) glass substrates by using low-cost and easily up-scalable wet chemical methods, films were characterized for microstructure, optical behaviour and surface characteristics, using XRD and other spectral measurements viz. FESEM, AFM, TEM, UV–Visible Spectroscopy, EDX and XPS. Against monolayered pristine films of CuO and ZnO, bilayered films yielded a major gain in PEC water splitting photocurrent, on being used as working electrode in PEC cell, in conjunction with platinum counter electrode and saturated calomel reference electrode (electrolyte solution 0.1 M NaOH solution, pH 13, temperature 30 ± 3.6 °C). Films with 1% Ru-incorporation yielded highest photocurrent (2.04 mA/cm2). Enhanced photoactivity of bilayered films was found correlated with increments in light absorption, charge carrier density and film surface area, coupled with reduced electrical resistivity. The study highlights an important role played by Ru added in ZnO overlayer, apparently existing as RuO2 nanoparticles dispersed in ZnO lattice, in hole-transfer from valence band of CuO underlayer to electrolyte, thereby imparting a significant boost on photocurrent generation.  相似文献   

8.
N. Naseri  A.Z. Moshfegh 《Solar Energy》2011,85(9):1972-1978
TiO2/ZnO and ZnO/TiO2 nanolayer thin films were synthesized using sol-gel method. Optical analysis revealed high transmittance of the films in the visible range with almost the same bandgap energy for the both systems. XPS technique shows stoichiometric formation of TiO2 and ZnO on the surface of TiO2/ZnO and ZnO/TiO2 layers, respectively. According to AFM observations and its data analysis, the TiO2/ZnO films exhibited a higher surface roughness and more effective interfaces with electrolyte during redox reactions. Based on photoelectrochemical measurements, TiO2/ZnO nanolayer photoanode possesses a lower charge transfer resistance and higher transient time for charge carriers (e and h+) and hence a higher photocurrent density under visible light irradiation as compared with the ZnO/TiO2 nanolayer system.  相似文献   

9.
A unique nanostructured rod-like morphology of hematite (α-Fe2O3), designed with no grain boundaries, has been investigated for the aim of a direct splitting of water at the hematite/electrolyte interface. Photoelectrochemical properties were studied by steady-state measurements on electrodes with controlled morphology and film thickness in aqueous electrolyte. The hematite electrodes were able to generate incident photon-to-current efficiencies (IPCEs) of 8% by illumination through the substrate with a wavelength of 350 nm and a light intensity of 0.1 mW cm−2 without any applied voltage.On the basis of light intensity studies, it is concluded that charge carrier recombinations due to the poor semiconductor properties in combination with slow oxidation kinetics at the hematite nanorods/electrolyte interface are the dominating problems. However, the high IPCE values obtained indicates that purpose-built nanorods of hematite is one significant way to strikingly lower the recombination rate of hematite material.  相似文献   

10.
Photoelectrochemical cells have been fabricated from electrochemically deposited polyterthiophene films. The thickness of the photoactive layer was systematically varied by altering the charge density of the electrodeposited film. The morphology, optical absorption and photovoltaic performance of these devices have been characterised as a function of film thickness in order to gain a better understanding of the structure–function relationships in photoelectrochemical cells. Two distinct growth modes are observed. Initially a compact two-dimensional ‘precursor’ polymer film is formed up to a critical thickness of several hundred nanometres whereupon the growth of a ‘bulk’ three-dimensional film structure occurs. The photovoltaic efficiency of these cells appears to be governed by the ‘precursor’ film, which is characterised by a dense, uniform morphology of polymer of increasing conjugation length. On the other hand, the ‘bulk’ overlayer, which manifests as a nodular and highly cracked surface layer, appears to be primarily responsible for limiting device efficiency.  相似文献   

11.
Visible-light absorbing TiO2 and WO3 photocatalytic thin films were prepared by radio-frequency (RF) magnetron sputtering. The effects of sputtering condition on the structural, optical, as well as photocatalytic properties of the prepared thin films were explored. In addition, a novel dual-layer photocatalytic thin film that combines both visible-light TiO2 and WO3 was prepared by the same deposition technique to further enhance the photocatalytic performance. Instrumental analyses such as XRD, SEM-EDX, and UV–visible absorption spectrometry were performed to reveal the crystallinity, surface morphology, chemical composition, and light absorption of the prepared photocatalytic thin films. The activities of the prepared photocatalytic thin films under both UV and visible-light irradiations were evaluated by conducting photovoltammetry and water-splitting reaction in an H-type reactor. The enhanced photocurrent of dual-layer photocatalytic thin film was proved to be resulted from the improved charge separation of the dual-layer structure. The H2 and O2 yields obtained from the water-splitting reactions were consistent with the photocurrent results, showing dual-layer photocatalyst with higher photoactivity than mono-layer photocatalyst.  相似文献   

12.
Photoelectrochemical and UV-Vis spectroelectrochemical measurements were performed in a three-electrode cell containing dodecylsulphate-doped polypyrrole films as active layers in contact with different aqueous electrolytes. The effect of both cations and anions of the electrolyte on the photocurrent generation and on the absorption spectra of the system was studied. Dynamic photocurrent and absorption spectra measurements performed during the redox cycles of the films show that both cation and anion insertion and deinsertion occurs during the cycles. These results are in agreement with the previously reported redox mechanism proposed for amphiphilic anion doped polypyrrole. Reduced films show cathodic photocurrent at –0.4>E>−0.8 V vs. Ag|AgCl. Photocurrent voltammograms are reproducible after the conditioning of the films and the higher cathodic currents were observed in films with thickness of 0.05–0.5 μm.  相似文献   

13.
Ag@TiO2 nanoparticle thin film was fabricated for photoelectrochemical water splitting in the visible light region. Under the irradiation of UV light, positive photocurrent was enhanced in both electrolytes of 0.1 M HNO3 and 0.1 M NaOH owing to the excitation of photoelectrons within the TiO2 shells. However, under the irradiation of visible light, the enhancement of positive photocurrent was observed only in 0.1 M HNO3 because of the formation of a Schottky barrier band bending at the Ag-TiO2 core-shell interface and the generation of photoelectrons resulted from the surface plasmon resonance of Ag cores. In 0.1 M NaOH, significant negative photocurrent was enhanced due to the influences of higher pH on the surface state and energy level of TiO2 shells. Such a visible light-induced photoresponse enhancement and photocurrent direction switching made the Ag@TiO2 nanoparticle thin film useful not only as a photoelectrode for water splitting but also as a photo-switch in a basic electrolyte.  相似文献   

14.
Nanostructured semiconductor thin films of Zn-Fe2O3 modified with underlying layer of Fe-TiO2 have been synthesized and studied as photoelectrode in photoelectrochemical (PEC) cell for generation of hydrogen through water splitting. The Zn-Fe2O3 thin film photoelectrodes were designed for best performance by tailoring thickness of the Fe-TiO2 film. A maximum photocurrent density of 748 μA/cm2 at 0.95 V/SCE and solar to hydrogen conversion efficiency of 0.47% was observed for 0.89 μm thick modified photoelectrode in 1 M NaOH as electrolyte and under 1.5 AM solar simulator. To analyse the PEC results the films were characterized for various physical and semiconducting properties using XRD, SEM, EDX and UV–Visible spectrophotometer. Zn-Fe2O3 thin films modified with Fe-TiO2 exhibited improved visible light absorption. A noticeable change in surface morphology of the modified Zn-Fe2O3 film was observed as compared to the pristine Zn-Fe2O3 film. Flatband potential values calculated from Mott–Schottky curves also supported the PEC response.  相似文献   

15.
Recent advances in electrochromics for smart windows applications   总被引:1,自引:0,他引:1  
Electrochromic smart windows are able to vary their throughput of radiant energy by low-voltage electrical pulses. This function is caused by reversible shuttling of electrons and charge balancing ions between an electrochromic thin film and a transparent counter electrode. The ion transport takes place via a solid electrolyte. Charge transport is evoked by a voltage applied between transparent electrical conductors surrounding the electrochromic film/electrolyte/counter electrode stack. This review summarizes recent progress concerning: (i) calculated optical properties of crystalline WO3, (ii) electrochromic properties of heavily disordered W oxide and oxyfluoride films produced by reactive magnetron bias sputtering, (iii) novel transparent reactively sputter-deposited Zr–Ce oxide counter electrodes and (iv) a new proton-conducting antimonic-acid-based polymer electrolyte. Special in depth presentations are given on elastic light scattering from W-oxide-based films and of electronic band structure effects affecting opto–chronopotentiometry data in Zr–Ce oxide. The review also contains some new device data for an electrochromic smart window capable of very high optical transmittance.  相似文献   

16.
Photocatalytic TiO2 thin films were prepared via an electron beam-induced deposition (EBID) method. The effects of post-calcination treatment on the properties of the prepared TiO2 thin films were studied. X-ray diffraction (XRD), scanning electron microscope-energy dispersive spectrometry (SEM-EDS), and UV–V is absorption spectrometry were performed to reveal the crystallinity, surface morphology, chemical composition, and light absorbance of the prepared TiO2 thin films. The photoelectrochemical characteristics of the TiO2 thin films were investigated with a potentiostat. Under UV irradiation, a photocurrent of ˜2.1 mA was observed for the TiO2 thin film with post-calcination at 500 °C. A water-splitting reaction was conducted over the TiO2 thin film with the best photoelectrochemical performance. The yields of hydrogen and oxygen were 59.8 and 30.6 μmole, respectively, after 8 h of reaction under UV irradiation.  相似文献   

17.
Polycrystalline WO3 thin films were fabricated by reactive magnetron sputtering at a substrate temperature of 350 °C under different Ar/O2 gas pressures. In order to study the thickness dependence of photoelectrochemical (PEC) behavior of WO3, the thickness-gradient films were fabricated and patterned using a micro-machined Si-shadow mask during the deposition process. The variation of the sputter pressure leads to the evolution of different microstructures of the thin films. The films fabricated at 2 mTorr sputter pressure are dense and show diminished PEC properties, while the films fabricated at 20 mTorr and 30 mTorr are less dense and exhibit enhanced water photooxidation efficiency. The enhanced photooxidation is attributed to the coexistence of porous microstructure and space charge region enabling improved charge carrier transfer to the electrolyte and back contact. A steady-state photocurrent as high as 2.5 mA cm−2 at 1 V vs. an Ag/AgCl (3 M KCl) reference electrode was observed. For WO3 films fabricated at 20 mTorr and 30 mTorr, the photocurrent increases continuously up to a thickness of 600 nm.  相似文献   

18.
用原位电聚合的方法在FTO导电玻璃上制备出了SO42-杂化的聚苯胺(PANI)(厚度10μm),并用循环伏安表征了其电聚合过程。通过扫描电镜表征,这种聚苯胺具有粗糙多孔的结构,有利于形成高比表面积的对电极。制备了以PMII和[EMIm]BF4、[EMIm]NTf2、[EMIm]N(CN)2不同组成比例的二元离子液体作为电解液的染料敏化太阳电池(DSSC)并研究其光伏行为,发现:使用[EMIm]N(CN)2和PMII(4∶6)电解液能得到最佳光电参数:短路电流密度Jsc(10.4mA.cm-2),开路电压Voc(0.655V),填充因子FF(0.521)和光电转换效率η(3.56%)。通过研究3种电解液的电导率I,3-和I-离子扩散系数,发现[EMIm]N(CN)2和PMII(4∶6)电解液具有最高的电导率和离子扩散系数。  相似文献   

19.
谢锐  郭烈锦 《太阳能学报》2011,32(6):936-940
利用超声喷雾热分解方法在ITO导电玻璃上成功制备了高质量低成本的Cd1-xZnxS薄膜,并利用X射线衍射(XRD)、扫描电镜(SEM)、紫外可见光谱(UV-vis)等表征手段对其进行了结构、形貌和光学性质表征,并采用锁相放大技术研究了Cd1-xZnxS电极的光电流作用谱图。结果表明,利用喷雾热分解方法能制备出结晶完好均匀致密的Cd1-xZnxS薄膜,其中CdS呈六角相,Cd1-xZnxS(0相似文献   

20.
Layered WO3/TiO2 nanostructures, fabricated by magnetron sputtering, demonstrate significantly enhanced photocurrent densities compared to individual TiO2 and WO3 layers. First, a large quantity of compositions having different microstructures and thicknesses were fabricated by a combinatorial approach: diverse WO3 microstructures were obtained by adjusting sputtering pressures and depositing the films in form of wedges; later layers of TiO2 nanocolumns were fabricated thereon by the oblique angle deposition. The obtained photocurrent densities of individual WO3 and TiO2 films show thickness and microstructure dependence. Among individual WO3 layers, porous films exhibit increased photocurrent densities as compared to the dense layer. TiO2 nanocolumns show length-dependent characteristics, where the photocurrent increases with increasing film thickness. However, by combining a WO3-wedge type layer with a layer of TiO2 nanocolumns, PEC properties strikingly improve, by about two orders of magnitude as compared to individual WO3 layers. The highest photocurrent that is measured in the combinatorial library of porous WO3/TiO2 films is as high as 0.11 mA/cm2. Efficient charge-separation and charge carrier transfer processes increase the photoconversion efficiency for such films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号