首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mixed coefficients of coupling between the closely spaced stepped-impedance resonators in comb filters of stripline design have been investigated. Transmission zeros at frequencies f zi correspond to mixed coupling coefficients k i . These zeros can be moved with respect to the filter passband central frequency f0 by modifying the shape of resonators. It was proved that the reduction of gap between resonators made it possible to locate frequencies f z and f0 closer to one another. The existing restrictions on the minimal value of gap between resonators limit the degree of proximity between f z and f0. The N-resonator stripline comb filters with mixed coupling can have N?1 transmission zeros. The absence of cross-coupling links in stripline filters simplifies their construction. It has been established that the thickness of central conductors of stripline resonators affects the positive and negative mixed coupling coefficients. The paper presents measurement data of miniature stripline three-resonator comb filter having an enhanced selectivity at the expense of two transmission zeros. The central frequency of filter is f0 = 1850 MHz, the bandwidth BW = 100 MHz. The filter having dimensions 5.8×4.2×2 mm was implemented by connecting two ceramic substrates having relative dielectric permittivity ε r = 92 and the metallized patterns deposited on them.  相似文献   

2.
Electron transport and photoresponse in the terahertz range in a GaN/AlGaN field-effect transistor with the submicrometer gate (0.25 μm) and two-dimensional electron gas in the channel (the electron concentration n s = 5 × 1012 cm?2) were studied at 4.2 K. The charge-carrier mobility in the transistor’s channel μ = 3500 cm2/(V s) was determined from the dependence of the conductance on magnetic field. It is found that the dependence of photovoltage at the radiation frequency f = 574 GHz on the gate voltage (i.e., on the concentration of two-dimensional electrons) features a characteristic maximum, which is related to a resonance response of the subgate plasma in the transistor channel.  相似文献   

3.
A BiCu2PO6 microwave dielectric ceramic was prepared using a solid-state reaction method. As the sintering temperature increased from 800°C to 880°C, the bulk density of BiCu2PO6 ceramic increased from 6.299 g/cm3 to 6.366 g/cm3; the optimal temperature was 860°C. The best microwave dielectric properties [permittivity (? r ) = ~16, a quality factor (Q × f) = ~39,110 GHz and a temperature coefficient of resonant frequency (τ f ) = ~?59 ppm/°C] were obtained in the ceramic sintered at 860°C for 2 h. Then, TiO2 with a positive τ f (~+400 ppm/°C) was added to compensate the τ f value. The composite material was found to have a near-zero τ f (+2.7 ppm/°C) and desirable microwave properties (? r  = 19.9, Q × f = 24,885 GHz) when synthesized at a sintering temperature of 880°C. This system could potentially be used for low-temperature co-fired ceramics technology applications.  相似文献   

4.
We present a modified 8f geometry for time domain terahertz (THz) spectroscopy (TDTS) experiments. We show, through simulations and data, that a simple rearranging of the off-axis parabolic mirrors, which are typically used to focus and direct THz radiation in TDTS experiments, results in a nearly 40 % reduction in the THz focal spot diameter. This effect stems from significant reduction of the principle optical aberrations which are enhanced in the conventional 8f geometry but partially compensated in the modified 8f experimental setup. We compare data from our home-built TDTS spectrometer in the modified 8f geometry to that of previous iterations that were designed in the conventional 8f geometry to demonstrate the effect.  相似文献   

5.
An electrochemical sensor based on functionalized multiwalled carbon nanotubes (MWCNTf) has been developed and applied for determination of anticancer drug flutamide in pharmaceutical and artificial urine samples. The electrode was prepared by modifying a glassy carbon electrode with MWCNTf, denoted herein as MWCNTf/GCE. The MWCNTf/GCE electrode exhibited high catalytic activity, high sensitivity, and high stability and was applicable over a wide concentration range for flutamide. The effects of the scan rate, pH, and nature of the electrolyte on the electrochemical behavior of flutamide on the MWCNTf/GCE were investigated. The results showed that this electrode presented the best square-wave voltammetric response to flutamide in Britton–Robinson buffer solution at pH 5.0 at frequency of 50 Hz and amplitude of 0.06 V. The proposed sensor presents a wide linear response range from concentration of 0.1 μmol L?1 up to 1000 μmol L?1 (or 27.6 μg L?1 up to 0.27 g L?1), with limit of detection, limit of quantification, and sensitivity of 0.03 μmol L?1, 0.1 μmol L?1, and 0.30 μμmol?1 L, respectively. The MWCNTf/GCE electrode was successfully applied for determination of flutamide in pharmaceutical formulations and artificial urine samples, giving results in agreement with those obtained by a comparative method described in literature. A paired Student’s t-test revealed no statistical difference between the reference and proposed method at 95% confidence level. The average recovery for fortified samples was 101 ± 1%.  相似文献   

6.
The correlation between the noise level 1/f and the degree of mosaic-structure order in gallium nitride epitaxial layers was studied for the first time. Samples with a doping level of N d ?N a ≈8×1016 cm?3 and a relatively high degree of order were characterized by the Hooge parameter α≈1.5×10?3. This value is unprecedently low for thin GaN epitaxial films. The Hooge parameter was significantly higher for samples with N d ?N a ≈1.1×1018 cm?3 and a low degree of order despite the fact that α generally decreases with increasing doping level at the same degree of order. Thus, the degree of mosaic-structure order affects not only the optical and electrical characteristics but also the fluctuation parameters of GaN epitaxial layers.  相似文献   

7.
The phenomenon of terahertz radiation detection by resonant tunneling structures (RTSs) has been studied. The calculations of the changes ΔI0 in the direct current (DC) component I0 under the action of an alternating electric field were carried out by the solution of a nonstationary Schrodinger equation with a time-periodic electric field based on the Floquet mode expansion of the wave functions. The dependences of the DC component I0 in resonant tunneling structures on the frequency ν and AC signal amplitude Vac have been built. It is shown that the ΔI0 value in triple-barrier RTSs at resonance frequency hv ≈ Er2Er1 (Er1 and Er2 are the energies of the size-quantized levels) can exceed a low-frequency value by more than an order of magnitude. The parameters of the structures have been optmized, in order to use them in the terahertz radiation detectors in the anbsence of an external bias. The possibility of tuning the resonance frequency in the terahertz range by changing the DC bias has been shown.  相似文献   

8.
We design an electrically controllable terahertz wave attenuator by using graphene. We show that terahertz wave can be confined and propagate on S-shaped graphene waveguide with little radiation losses, and the confined terahertz wave is further manipulated and controlled via external applied voltage bias. The simulated results show that, when chemical potential changes from 0.03 into 0.05 eV, the extinction ratio of the terahertz wave attenuator can be tuned from 1.28 to 39.42 dB. Besides the simplicity, this novel terahertz wave attenuator has advantages of small size (24?×?30 μm2), a low insertion loss, and good controllability. It has a potential application for forthcoming planar terahertz wave integrated circuit fields.  相似文献   

9.
Infrared reflection spectra in the range of 5200–380 cm?1 were measured for polycrystalline samarium monosulfide samples in the semiconductor phase with compositions Sm1 + x S lying within the homogeneity range (0 ≤ x ≤ 0.17) in the temperature range of 300–600 K. Five peaks with energies in the range of 1150–880 cm?1, whose positions depend weakly on the composition and temperature. It was shown that the reflection peaks are associated with 7 F 07 F 2 transitions of 4f electrons of Sm2+ ions.  相似文献   

10.
We have studied the ultrafast magnon dynamics in an antiferromagnetic 3d-transition-metal monoxide, nickel oxide (NiO), using optical pump-probe spectroscopy and terahertz time-domain spectroscopy (THz-TDS). THz damped magnon oscillations were observed in the Faraday rotation signal and in the transmitted THz electric field via optical pump-probe spectroscopy and THz-TDS, respectively. The magnon signals were observed in both the optical pump-probe spectroscopy and THz-TDS experiments, which shows that both Raman- and infrared-active modes are included in the NiO magnon modes. The magnon relaxation rate observed using THz-TDS was found to be almost constant up to the Néel temperature T N (= 523 K) and to increase abruptly near that temperature. This shows that temperature-independent spin-spin relaxation dominates up to T N . In our experiment, softening of the magnon frequency near T N was clearly observed. This result shows that the optical pump-probe spectroscopy and THz-TDS have high frequency resolution and a high signal to noise ratio in the THz region. We discuss the observed temperature dependence of the magnon frequencies using three different molecular field theories. The experimental results suggest that the biquadratic contribution of the exchange interaction plays an important role in the temperature dependence of the sublattice magnetization and the magnon frequency in cubic antiferromagnetic oxides.  相似文献   

11.
Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p+-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E0.36 trap) and FeV2 (H0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V2). The observed complexes are electrically active and introduce new electron (E0.36: E t e =E c -0.365 eV, σ n =6.8×10?15 cm2) and hole (H0.18: E t h =E v +0.184 eV, σ p =3.0×10?15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E t e =E c ?(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p+-n junctions.  相似文献   

12.
为实现太赫兹辐射特性精准认知,开展太赫兹辐射绝对强度测量研究。通过光学频率梳产生太赫兹频率梳,利用太赫兹频率梳实现太赫兹辐射源空间强度测量。本文利用电光采样和光电导探测两种方式,实现了100 GHz辐射源空间辐射强度测量;将100 GHz辐射总功率溯源到标准太赫兹功率计,实现太赫兹辐射强度绝对测量。分析比较了利用800 nm空间光进行电光采样和利用1550 nm光纤激光进行光电导探测的测量结果。本文在不同距离下,对太赫兹辐射源的空间辐射绝对强度进行了测量,实验揭示了太赫兹辐射传输的空间演化特性。  相似文献   

13.
Experimental data on the spontaneous emission and absorption modulation in boron-doped silicon under CO2 laser excitation depending on the uniaxial stress applied along the [001] and [011] crystallographic directions are presented. Room-temperature radiation is used as the probe radiation. Low stress (less than 0.5 kbar) is shown to reduce losses in the terahertz region by 20%. The main contribution to absorption modulation at zero and low stress is made by A+ centers. Intersubband free hole transitions additionally contribute to terahertz absorption at higher stress. These contributions can be minimized by compensation.  相似文献   

14.
The possibility of fabricating heavily doped (N a ?N d ≥ 1 × 1019 cm?3) p+-4H-SiC layers on CVD-grown lightly doped n-4H-SiC layers by sublimation epitaxy has been demonstrated. It is shown that a Au/Pd/Ti/Pd contact, which combines a low specific contact resistance (~2 × 10?5 Ω cm2) with high thermal stability (up to 700°C), is the optimal contact to p-4H-SiC. The p-n structures obtained are used to fabricate packaged diodes with a breakdown voltage of up to 1400 V.  相似文献   

15.
Characterisation of materials often requires the use of a substrate to support the sample being investigated. For optical characterisation at terahertz frequencies, quartz is commonly used owing to its high transmission and low absorption at these frequencies. Knowledge of the complex refractive index of quartz is required for analysis of time-domain terahertz spectroscopy and optical pump terahertz probe spectroscopy for samples on a quartz substrate. Here, we present the refractive index and extinction coefficient for α-quartz between 0.5 THz and 5.5 THz (17–183 cm??1) taken at 10, 40, 80, 120, 160, 200 and 300 K. Quartz shows excellent transmission and is thus an ideal optical substrate over the THz band, apart from the region 3.9 ± 0.1 THz owing to a spectral feature originating from the lowest energy optical phonon modes. We also present the experimentally measured polariton dispersion of α-quartz over this frequency range.  相似文献   

16.
The results of experimental studies of interphase interactions in TiBx-n-GaAs (GaP, InP, 6H-SiC) contacts stimulated by external effects are described. These effects are rapid thermal annealing at temperatures as high as 1000°C, microwave treatment at f=2.5 GHz, and 60Co γ radiation in the range of doses 105–107 rad. Possible thermal and athermal relaxation mechanisms of internal stresses are considered. It is shown that thermally stable TiBx-n-GaAs (GaP, InP, 6H-SiC) interfaces can be formed.  相似文献   

17.
The results devoted to the development of a method for creating an RF transistor, in which a T-shaped gate is formed by nanoimprint lithography, are presented. The characteristics of GaAs p-HEMT transistors have been studied. The developed transistor has a gate “foot” length of the order of 250 nm and a maximum transconductance of more than 350 mS/mm. The maximum frequency of current amplification f t is 40 GHz at the drain-source voltage V DS = 1.4 V and the maximum frequency of the power gain f max is 50 GHz at V DS = 3 V.  相似文献   

18.
Spontaneous emission from selectively doped GaAs/InGaAs:Si and GaAs/InGaAsP:Si heterostructures is studied in the frequency range of ~3–3.5 THz for transitions between the states of the two-dimensional subband and donor center (Si) under the condition of excitation with a CO2 laser at liquid-helium temperature. It is shown that the population inversion and amplification in an active layer of 100–300 cm?1 in multilayered structures with quantum wells (50 periods) and a concentration of doping centers N D ≈ 1011 cm?2 can be attained under the excitation-flux density 1023 photons/(cm2 s).  相似文献   

19.
We have investigated the structural and electrical characteristics of the Ag/n-TiO2/p-Si/Al heterostructure. Thin films of pure TiO2 were deposited on p-type silicon (100) by optimized pulsed laser ablation with a KrF-excimer laser in an oxygen-controlled environment. X-ray diffraction analysis showed the formation of crystalline TiO2 film having a tetragonal texture with a strong (210) plane as the preferred direction. High purity aluminium and silver metals were deposited to obtain ohmic contacts on p-Si and n-TiO2, respectively. The current–voltage (IV) characteristics of the fabricated heterostructure were studied by using thermionic emission diffusion mechanism over the temperature range of 80–300 K. Parameters such as barrier height and ideality factor were derived from the measured IV data of the heterostructure. The detailed analysis of IV measurements revealed good rectifying behavior in the inhomogeneous Ag/n-TiO2/p-Si(100)/Al heterostructure. The variations of barrier height and ideality factor with temperature and the non-linearity of the activation energy plot confirmed that barrier heights at the interface follow Gaussian distributions. The value of Richardson’s constant was found to be 6.73 × 105 Am?2 K?2, which is of the order of the theoretical value 3.2 × 105 Am?2 K?2. The capacitance–voltage (CV) measurements of the heterostructure were investigated as a function of temperature. The frequency dependence (Mott–Schottky plot) of the CV characteristics was also studied. These measurements indicate the occurrence of a built-in barrier and impurity concentration in TiO2 film. The optical studies were also performed using a UV–Vis spectrophotometer. The optical band gap energy of TiO2 films was found to be 3.60 eV.  相似文献   

20.
Features of absorption and reflection of infrared radiation in the range 500–6000 cm?1 are investigated; these features are associated with free carriers in the layers of mesoporous Si (porosity, 60–70%) formed in single-crystal p-Si(100) wafers with a hole concentration of N p ≈1020 cm?3. It is found that the contribution of free holes to the optical parameters of the samples decreases as the porosity of the material increases and further falls when the samples are naturally oxidized in air. The experimental results are explained in the context of a model based on the Bruggeman effective medium approximation and the Drude classical theory with a correction for additional carrier scattering in silicon residues (nanocrystals). A comparison between the calculated and experimental dependences yields a hole concentration in nanocrystals of N p ≈1019 cm?3 for as-prepared layers and shows a reduction of N p when they are naturally oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号