首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceria supported 2 wt% Pd catalysts for low-temperature methane combustion were prepared by the impregnation (IM) and deposition–precipitation (DP) methods, which are denoted as Pd–IM and Pd–DP, respectively. DP was found to be an available method for achieving high activity and stability of the Pd/CeO2 catalyst. The temperatures for methane ignition (T10%) and total conversion (T100%) over Pd–DP are 224 and 300 °C at GHSV of 50,000 h−1, which are 83 and 110 °C lower than the corresponding temperatures of Pd/Al2O3. X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS) analyses show that palladium species in Pd–DP is highly dispersed, positively charged and difficultly reduced. Raman spectra disclosed that the largest concentration of defects and/or oxygen vacancies was formed in Pd–DP catalyst. A kind of cationic PdOδ+ sites with higher binding energies than PdO are in close vicinity to the oxygen vacancies in the CeO2 support and might act as the active centers for methane oxidation. Furthermore, the deactivation and steam aging tests for Pd–DP showed that the performance of this type of palladium was very stable and could be repeatedly recovered after several long time aging tests.  相似文献   

2.
Heats of adsorption were measured calorimetrically for O2 adsorption on reduced Pd/alumina, Pd/ceria, and Pd/ceria–zirconia catalysts, all with 1 wt% Pd. Significantly more O2 adsorbed on the ceria-containing catalysts due to oxidation of the support. For Pd/alumina, the heats were found to be between 180 and 220 kJ/mol, only slightly higher in magnitude than the heat of reaction for bulk oxidation of Pd. However, the heats of adsorption for both ceria and ceria–zirconia were also 200 kJ/mol, much lower than the heat of reaction for Ce2O3 oxidation to CeO2, but in reasonable agreement with estimates from O2 desorption studies on model ceria films. The implications of these results for understanding oxygen-storage properties on ceria-based catalysts are discussed.  相似文献   

3.
The preparation and characterisation of Pd–ZnO catalysts for the synthesis of methanol from carbon dioxide and hydrogen has been examined. Calcination and reduction temperatures have been shown to have a major effect on conversion and selectivity in the system. Extensive characterisation shows the catalyst performance is associated with ZnO islands on a Pd interface, best prepared by depositionprecipitation. Reduction or calcination at high temperatures leads to the formation of a Pd–Zn alloy and to loss of performance.  相似文献   

4.
The effect of CeO2 loading on the surface properties and catalytic behaviors of CeO2–Al2O3-supported Pd catalysts was studied in the process of steam reforming of methane. The catalysts were characterized by SBET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), UV–vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). The XRD measurements indicated that palladium particles on the surface of fresh and reduced catalysts are well dispersed. TPR experiments revealed a heterogeneous distribution of PdO species over CeO2–Al2O3 supports; one fraction of large particles, reducible at room temperature, another fraction interacting with CeO2 and Al2O3, reducible at higher temperatures of 347 and 423 K, respectively. The PdO species reducible at room temperature showed lower CO adsorption relative to the PdO species reducible at high temperature. In contrast to Pd/Al2O3, the FTIR results revealed that CeO2-containing catalyst with CeO2 loading ≥12 wt.% show lower ratio (LF/HF) between the intensity of the CO bands in the bridging mode at low frequency (LF) and the linear mode at high frequency (HF). This ratio was constant with increasing the temperature of reduction. The FTIR spectra and the measurement of Pd dispersion suggested that Pd surface becomes partially covered with ceria at all temperature of reduction and with increasing ceria loading in Pd/CeO2–Al2O3 catalysts. Although the PdO/Al2O3 showed higher Pd dispersion compared to that of CeO2-containing catalysts, the addition of ceria resulted in an increase of the turnover rate and specific rate to steam reforming of methane. The CH4 turnover rate of Pd/CeO2–Al2O3 catalysts with ceria loading ≥12 wt.% was around four orders of magnitude higher compared to that of Pd/Al2O3 catalyst. The increase of the activity of the catalysts was attributed to various effects of CeO2 such as: (i) change of superficial Pd structure with blocking of Pd sites; (ii) the jumping of oxygen (O*) from ceria to Pd surface, which can decrease the carbon formation on Pd surface. Considering that these effects of CeO2 are opposite to changes of the reaction rate, the increase of specific reaction rate with enhancing the ceria loading suggests that net effect results in the increase of the accessibility of CH4 to metal active sites.  相似文献   

5.
《Catalysis communications》2007,8(8):1263-1266
The efficiency of PdO-based catalysts for the combustion of methane is strongly influenced by the dynamics of Pd–PdO transformation. Previous investigations reported that the addition of CeO2 to the support results in a strong promotion of Pd reoxidation. In this work it is shown that the mechanism of Pd–PdO transformation in redox cycles in the presence of CeO2 is associated with a deep contact between the noble metal crystallites and CeO2: only Pd particles in contact with the promoter reoxidize at high temperature, while a different dynamics characterizes the behaviour of Pd particles not in contact with CeO2.  相似文献   

6.
Pd/CeO2/Ta/Si model catalysts were prepared by spin coating and sputter deposition method, and characterized by means of AFM, SEM and in situ XPS, especially focusing on the redox properties of Ce and Pd elements. Compared with thin CeO2 films (about 2.2nm), the thicker ones (about 22nm) maintained Ce4+ oxidation state even after treatment with H2 up to 500°C while the presence of Pd facilitated the reduction of ceria. The reduction of ceria brought about following that of PdO, which was explained by the spillover of hydride in Pd to CeO2 originating from hydrogen adsorption on the Pd surface. Compared with the sputter deposition method, spin coating produced the smaller size of Pd particles, thus leading to formation of the stable PdO species against hydrogen. Based on these results, a schematic model of Pd/CeO2/Ta/Si was suggested and it might be assumed that spin coating method provided with an environment similar to the conventional impregnation.  相似文献   

7.
Systems of Pd supported on various La2O3-modified -Al2O3 and CeO2–Al2O3 catalysts were tested for catalytic methanol decomposition and characterized by means of XRD, BET, TPR, H2-chemisorption and CO–FTIR. The addition of lanthanum significantly improved the selectivity of CO and H2 for all the catalysts but showed a different influence on the catalytic activity in two systems. Methanol conversion decreased on La2O3-modified Pd/-Al2O3 catalysts, in line with the reduction of Pd dispersion, while the addition of La2O3 improved the dispersion of Pd and reinforced Pd–CeO2 interaction for La2O3-modified Pd/CeO2–Al2O3 catalysts, which resulted in a high production rate of CO and H2. Thus, a synergistic effect between CeO2 and La2O3 was observed on -Al2O3-supported Pd catalyst for methanol decomposition.  相似文献   

8.
Francisco  M.S.P.  Mastelaro  V.R.  Florentino  A.O.  Bazin  D. 《Topics in Catalysis》2002,18(1-2):105-111
A structural study of CuO supported on a CeO2–TiO2 system was undertaken using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. The results of XRD revealed the presence of only two phases, TiO2 anatase and CeO2 cerianite. A trend towards smaller TiO2 crystallites was observed when cerium content increased. When the amount of cerium increased, Ti K-edge XANES analysis showed an increasing distortion of Ti sites. The results of Ce LIII-edge EXAFS showed that Ce atoms are coordinated by eight oxygen atoms at 2.32 Å. For the sample containing a small amount of cerium, the EXAFS analysis indicated that the local structure around Ce atoms was highly distorted. The catalysts presented quite different Cu K-edge XANES spectra compared to the spectra of the CuO and Cu2O reference compounds. The Cu–O mean bond length was close to that of the CuO and the Cu atoms in the catalysts are surrounded by approximately four oxygen atoms in their first shell. Copper supported on the ceria-modified titania support catalysts displayed a better performance in the methanol dehydrogenation when compared to copper supported only on titania or on ceria.  相似文献   

9.
All silicious MCM-41 was investigated as a support or a support precursor for Pd/SiO2 and prepared catalysts were tested for methanol synthesis from CO and H2. The methods of Pd loading on the MCM-41 were impregnation, seed impregnation and chemical vapor deposition (CVD). For both impregnations, most Pd existed outside of the pore as large particles, and only a small part of Pd was inserted into the pore of MCM-41 retaining the initial structure. On the contrary, in the catalyst prepared by CVD method, the MCM-41 structure was completely destroyed to become amorphous SiO2. Yet the average Pd particle size in this catalyst was smaller and its distribution was narrower than those of the catalysts prepared by impregnation methods. In the methanol synthesis from CO hydrogenation the catalyst prepared by CVD showed higher methanol selectivity than other MCM-41-derived catalysts. This result was considered to be due to the more uniform distribution of the Pd particle size.  相似文献   

10.
We have examined the effect of SO2 poisoning on a series of catalysts having Pd supported on ceria, alumina, and ceria–zirconia. For pre-exposure of 20 ppm SO2 at 673 K, we observed no changes in the light-off curves for CO oxidation on Pd/alumina. This pre-exposure of SO2 to Pd/ceria resulted in a significant upward shift in the light-off curve, so that the poisoned Pd/ceria catalyst exhibited similar rates to that of Pd/alumina. Similar upward shifts were observed for the water–gas-shift reaction upon exposure of Pd/ceria or Pd/ceria–zirconia samples to SO2. However, pulse-reactor data with alternating CO and O2 pulses showed that SO2 poisoning actually increased the amount of oxygen that could be transferred to and from the catalyst over the entire temperature range that was examined. The implication of these results for understanding the effect of SO2 poisoning and the measurement of OSC are discussed.  相似文献   

11.
The present study was undertaken to investigate the influence of ceria on the physicochemical and catalytic properties of V2O5/TiO2–ZrO2 for oxidative dehydrogenation of ethylbenzene to styrene utilizing CO2 as a soft oxidant. Monolayer equivalents of ceria, vanadia and ceria–vanadia combination over TiO2–ZrO2 (TZ) support were impregnated by a coprecipitation and wet impregnation methods. Synthesized catalysts were characterized by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature programmed reduction, transmission electron microscopy and BET surface area methods. The XRD profiles of 550 °C calcined samples revealed amorphous nature of the materials. Upon increasing calcination temperature to 750 °C, in addition to ZrTiO4 peaks, few other lines due to ZrV2O7 and CeVO4 were observed. The XPS V 2p results revealed the existence of V4+ and V5+ species at 550 and 750 °C calcinations temperatures, respectively. TEM analysis suggested the presence of nanosized (<7 nm) particles with narrow range distribution. Raman measurements confirmed the formation ZrTiO4 under high temperature treatments. TPR measurements suggested a facile reduction of CeO2–V2O5/TZ sample. Among various samples evaluated, the CeO2–V2O5/TZ sample exhibited highest conversion and nearly 100% product selectivity. In particular, the addition of ceria to V2O5/TZ suppressed the coke deposition and allowed a stable and high catalytic activity.  相似文献   

12.
A series of Pd–M bimetallic three-way catalysts (M = Cr, Cu and Ni) supported on a (Ce,Zr)Ox material has been characterized using a combination of X-ray diffraction and Raman spectroscopy, and employing in situ diffuse reflectance Fourier transform infrared and X-ray near-edge structure spectroscopies to analyse the redox and chemical processes taking place during light-off conditions under CO, NO and O2. The catalytic behaviour of these bimetallic systems was strongly affected by the degree of interaction between the noble and base metals in the calcined state. Among the base metals tested, Ni appeared to exert the least influence over the noble metal state/behaviour after calcination and under reaction conditions. Cr and Cu appear to interact with Pd in the calcined state, leading to a reduction in the temperature at which Pd was converted to Pd(0) with simultaneous formation of a binary PdM alloy during the reaction run. At high temperature, these alloy phases evolved into pure metallic Pd(0) particles and, in the case of the Cu-containing catalyst, result in a strong interaction with the support. The catalytic performance of these three Pd–M systems in the CO and NO elimination reactions are correlated with the nature and properties of the oxidized and reduced Pd-containing phases which are present in each case.  相似文献   

13.
The deactivation mechanism of Pd supported on silica and mesoporous silica (SBA-15) using CO2-expanded methanol as solvent was studied in the direct synthesis of H2O2 in batch and semi-continuous batch reactor tests as well as its hydrogenolysis. Fresh and used catalysts were characterized by TPR and CO chemisorption. The results evidence the presence of deactivation, which can be correlated to the loss of accessible active metal surface area due to sintering of Pd, but there is also an effect of the presence of the ordered mesoporous structure and of the reaction conditions. The higher concentration of H2 in solution in semi-continuous batch reactor tests with respect to batch reactor tests leads to a more relevant deactivation in Pd-SiO2 with respect to Pd-SBA-15, but a higher initial activity, due to the fact that H2 accelerates the reduction of the Pd species which are less reducible in Pd-SiO2 than in Pd-SBA-15. Pd-SBA-15 shows a higher H2O2 selectivity and productivity with respect to Pd-SiO2 in batch reactor tests, related to the presence of easier reducible Pd species. Another difference is related to the different mechanism of sintering. On the SBA-15 support, due to the presence of the ordered mesoporosity, the Pd particles migrate into the SBA-15 channels forming elongated 1D-type particles. In Pd-SiO2 catalyst, instead, the sintering of the Pd particles leads to large aggregates of Pd particles in the range of 20-25 nm.  相似文献   

14.
Two main pivotal subjects of research in automotive catalysts were studied by modern X-ray absorption analysis techniques. One is oxygen storage/release behaviour, and the other is sintering inhibition of Pt particles. First, three types of CeO2–ZrO2 (Ce:Zr = 1:1 molar ratio) compounds with different oxygen storage/release capacities and different structural properties were prepared, and the valence change of Ce as a function of temperature during oxygen release/storage processes was investigated. The reduction of surface Ce mainly occurred in the range 100–170 °C, and the reduction of bulk Ce progressed at high temperatures of 170 °C and above. The Ce reduction behaviour depended not only on the homogeneity of the Ce and Zr for bulk reduction at high temperatures but also on the particle size of the CeO2–ZrO2 samples for surface reduction at low temperatures. Secondly, sintering inhibition of Pt in Pt/Al2O3, Pt/MgO and Pt/ceria-based catalysts after 800 °C ageing in air was studied. We found that the Pt–O–M (M = Mg, Ce) bond acted as an anchor and inhibited the sintering of Pt particles on MgO or ceria-based oxide. Especially, it was noteworthy that the Pt–O–Ce4+ bond on the ceria-based support breaks easily through the reduction of Ce (Ce4+ → Ce3+) during the usual stoichiometric and reducing conditions.  相似文献   

15.
CeO2–ZrO2 solid solution catalysts are very effective for the selective synthesis of dimethyl carbonate from methanol and CO2. The activity was much dependent on the calcination temperature. The higher the calcination temperature, the higher the activity of the catalyst for DMC formation, though the BET surface area is lower on the catalyst calcined at higher temperature.  相似文献   

16.
Copper oxide–ceria (CuO–CeO2) catalyst for selective oxidation of carbon monoxide (CO) was prepared by co-precipitation and hydrothermal treatment methods and evaluated for catalytic activity in a reformate gas composition which simulated the produced gas from methanol steam reforming. By applying the condition of hydrothermal treatment, the catalytic activity of CuO–CeO2 catalyst was increased and the operating temperature window, in which the concentration of carbon monoxide was lower than 10 ppm, was widened. From the thermogravimetric (TG) results of hydrothermally treated catalyst precursor, CuO–CeO2 catalyst did not show any improvement in physical properties such as Brunauer Emmett Teller (BET) surface area, pore volume and average pore diameter, but the chemical stability might be enhanced by hydrothermal treatment. By hydrothermal treatment, cuprous ion in the CuO–CeO2 catalyst migrated to the surface of catalyst resulting in increased surface concentration of copper and formation of cupric oxide on the surface of catalyst during calcination. While increasing the calcination temperature (i.e. above 800 °C), the phase separation occurred with a part of copper and cupric oxide was formed on the surface of catalyst which was observed in X-ray diffraction (XRD) analysis.  相似文献   

17.
A series of MnOx–CeO2 mixed oxide catalysts with different compositions prepared by sol–gel method were tested for the catalytic combustion of chlorobenzene (CB), as a model of volatile organic compounds of chlorinated aromatics. MnOx–CeO2 catalysts with different ratios of Mn/Ce + Mn were found to possess high catalytic activity in the catalytic combustion of CB, and MnOx(0.86)–CeO2 was identified as the most active catalyst, on which the temperature of complete combustion of CB was 254 °C. Effects of systematic variation of reaction conditions, including space velocity and inlet CB concentration on the catalytic combustion of CB were investigated. Additionally, the stability and deactivation of MnOx–CeO2 catalysts were studied by various characterization methods and other assistant experiments. MnOx–CeO2 catalysts with high Mn/Ce + Mn ratios present a stable high activity, which is related to their high ability to remove the adsorbed Cl species and a large amount of active surface oxygen.  相似文献   

18.
Salvesen  T.  Roesch  S.  Sermon  P.A.  Kaur  P. 《Topics in Catalysis》2001,16(1-4):381-384
Al2O3, CeO2–Al2O3, CeO2–Tb4O7–Al2O3 and ZrO2–Al2O3 supported Pd samples have been prepared by sol–gel methods. Extents and mechanisms of N2O production in CO–NO and CO–NO–O2 reactions on these have been considered. This occurs most selectively under oxidising (lean-burn) conditions or in the presence of CeO2 and CeO2–Tb4O7 promoters near the CO–NO light off temperature. Over Pd/ZrO2–Al2O3 the CO–NO reaction at 573 K has CO and NO conversions that are second order with respect to p CO and p NO. Over this catalyst NO conversion is faster than that of CO until O2(g) is added, causing CO conversion and N2O production at 573 K to rise simultaneously. CeO2 or CeO2–Tb4O7 incorporation into a Pd/Al2O3 catalyst enhances N2O production near the CO–NO light-off temperature in the absence of added O2 without CO conversion being raised. There is current attention on pollution control opportunities through lean-burn conditions, Pd catalysts and oxygen storage capacity enhancement. The present work suggests that their role in N2O production may need to be better understood and controlled. For the moment N2O formation provides a window on mechanisms of TWC operation.  相似文献   

19.
A kinetic mathematical model has been applied to investigate for the first time the effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation during Oxygen Storage Capacity (OSC) measurements under dynamic conditions over Pd/CeO2 catalysts in the 500–700 °C range. The dependence of the intrinsic rate constant k1 of the CO oxidation reaction on PdO, and that of k 2 app of the oxygen back-spillover from ceria to Pd/PdO on the palladium particle size was estimated by performing curve-fitting of the experimental CO and CO2 pulse transient responses obtained. Activation energies of 8.0, 9.5 and 21.1 kJ/mol were calculated for the Eley–Rideal step of CO oxidation for the 1.3, 1.8 and 16.4 nm Pd particles, respectively, supported on CeO2. The transient rates of CO oxidation and oxygen back-spillover were found to decrease with increasing Pd particle size.  相似文献   

20.
2-Propanol and molecular H2 (in methanol (MeOH) and MeOH–water) were examined as reducing agents for the liquid phase hydrodechlorination (HDC) of dioxins over 2 wt.% Pd/γ-Al2O3. Different amounts of NaOH were added to the reaction mixtures. The 2-propanol and H2(g)/MeOH systems presented similar HDC activity. Notwithstanding, Pd sintering and graphitic carbon directly bonded to Pd on catalyst surface was observed on samples used with H2(g)/MeOH. The addition of water to H2(g)/MeOH decreased Pd sintering and favored dissolution of sodium compounds. However, dioxin degradation efficiency diminished. By contrast, 2-propanol acting both as reducing agent and solvent provided hydrogen to the HDC reaction, avoided metal sintering and Pd–C formation. Besides, almost complete dioxin degradation under mild reaction conditions was obtained. Kinetic experiments of dioxin HDC with 2-propanol showed a maximum net reaction rate and turnover frequency (TOF) for a given initial concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). After that value, both reaction rate and TOF decreased. On the other hand, reaction rates and TOFs of dioxin-like polychlorinated biphenyls (DL-PCBs) linearly increased with concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号