首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We studied the interactions of two natural thyroid hormone receptor (TR) mutants from patients with resistance to thyroid hormone (RTH) and an artificial TR mutant with a nuclear receptor corepressor, N-CoR, and a steroid receptor coactivator, SRC-1. In electrophoretic mobility shift assays, wild-type TRbeta-1 interacted with N-CoR in the absence of ligand, whereas T3 caused dissociation of the TRbeta-1/N-CoR complex and formation of TRbeta-1/SRC-1 complex. In contrast, a natural mutant (G345R) with poor T3-binding affinity formed TRbeta-1/N-CoR complex, both in the absence and presence of T3, but could not form TRbeta-1/SRC-1 complex. Another TR mutant, which bound T3 with normal affinity and containing a mutation in the AF-2 region (E457D), had normal interactions with N-CoR but could not bind SRC-1. Both these mutants had strong dominant negative activity on wild-type TR transactivation. Studies with a TR mutant that had slightly decreased T3-binding affinity (R320H) showed a T3-dependent decrease in binding to N-CoR and increase in binding to SRC-1 that reflected its decreased ligand binding affinity. Additionally, when N-CoR and SRC-1 were added to these receptors at various T3 concentrations in electrophoretic mobility shift assays, TR/N-CoR and TR/SRC-1 complexes, but not intermediate complexes were observed, suggesting that N-CoR release is necessary before SRC-1 binding to TR. Our data provide new insight on the molecular mechanisms of dominant negative activity in RTH and suggest that the inability of mutant TRs to interact with coactivators such as SRC-1, which results from reduced T3-binding affinity, is a determinant of dominant negative activity.  相似文献   

2.
3.
4.
5.
Hormonal responsiveness in peripheral tissues is variable in patients with resistance to thyroid hormone (RTH). One cause of this may be differential interaction of RTH mutants of thyroid hormone receptor beta (TR beta) with TR auxiliary proteins (TRAPs). We used gel shift mobility assays to examine the interaction of wild-type and mutant TR beta s with retinoid X receptors (RXRs) and endogenous TRAPs. Some mutants showed reduced homodimerization but retained heterodimerization with recombinant RXRs. Wild-type TR beta formed heterodimeric complexes with multiple TRAPs in nuclear extracts of rat tissues, but RTH mutants showed variably altered heterodimerization with each TRAP. With liver nuclear extract, all mutants with impaired homodimerization also showed impaired TR beta-TRAP heterodimerization. Thus heterodimerizations with RXRs and TRAPs are differently affected by RTH mutations. Our results suggest that multiple TRAPs are expressed in tissue-specific patterns. The variability of TR beta heterodimerization with TRAPs may account, in part, for the variable tissue responsiveness in RTH.  相似文献   

6.
Analysis of the thyroid hormone receptor beta (TRbeta) gene of a Thai female with the syndrome of resistance to thyroid hormone (RTH) revealed a missense mutation at codon 317, changing the guanine in nucleotide 1234 to an adenine that results in the replacement of the normal alanine (GCT) with a threonine (ACT). The proposita was heterozygous, and this mutation was not present in her parents and her sister, compatible with a neomutation. This is the first report of TRbeta gene mutation causing RTH in an individual of Thai origin.  相似文献   

7.
8.
BACKGROUND: Mutations in the ligand-binding domain of the thyroid hormone receptor beta (TR beta) gene cause the syndrome of resistance to thyroid hormone (RTH). The clinical phenotype results from the antagonism of the normal TR alpha and the non-mutated TR beta alleles by the TR beta 1 mutants, via a dominant negative effect. There is, however, marked heterogeneity of organ resistance within and among kindreds with RTH. This study examines the potential role of cell type in modulating the dominant negative potency of human TR beta 1 (h-TR beta 1) mutants. MATERIALS AND METHODS: Transient transfections were performed in HeLa and NIH3T3 cells, using a wild type (WT) and three naturally occurring mutant h-TR beta 1 constructs, and three natural thyroid hormone response elements (TREs). Immunocytochemistry was performed to detect levels of TR beta 1 expression in these two cell types. In order to determine how TR beta 1 interacts with other cellular partners, gel-shift analyses using HeLa and NIH3T3 nuclear extracts were performed. RESULTS: Transfection studies using WT h-TR beta 1 in HeLa and NIH3T3 cells, showed that the 3,3',5-triiodothyronine (T3)-induced transactivation of the different TREs varied between cell types. Unlike the non-T3-binding h-TR beta 1 mutant, PV, mutants ED and OK displayed the expected T3-induced dose responsiveness in these two cell types. For each TRE examined, the magnitude of the dominant negative effect varied between the cell types. The levels of receptor expression in HeLa and NIH3T3 cells were identical, as determined by immunocytochemistry. Gel-shift analyses showed differences in the formation of hetero- and homodimers depending on both the cell type and TRE motif. CONCLUSIONS: The cell type in which a mutant receptor operates affects the relative amounts of hetero- and homodimers. Together with the nature of the mutation and the TRE-motif, this could modulate the dominant negative action of mutant receptors in different tissues, which, in turn, could contribute to the variable phenotypic characteristics of RTH.  相似文献   

9.
10.
Steroid Receptor Coactivator-1 (SRC-1) interacts with nuclear receptors only when they are bound to the ligands and enhance the transactivation. We identified splicing variants encoding three isoforms, SRC-1, SRC-1(-Q), and SRC-1E, generated by alternative usage of an exon(s) and splicing acceptor sites. RT-PCR analysis showed that SRC-1E was more abundantly expressed than SRC-1 or SRC-1(-Q) at the mRNA level in all the cell lines tested. SRC-1E lacks 56 amino acids of SRC-1 and has unique 14 amino acids at the carboxyl terminus, while SRC-1(-Q) differs from SRC-1 by deletion of only one glutamine residue. Since the C-terminal domain of SRC-1 has been shown to be involved in the interaction with nuclear receptors, the enhancement of transactivation by these three isoforms was tested. SRC-1E enhanced thyroid hormone dependent transactivation of reporter gene expression more profoundly than SRC-1 or SRC-1(-Q). Taken together, it was suggested that SRC-1E is the major isoform of SRC-1 to mediate thyroid hormone action.  相似文献   

11.
Retinoid X receptors (RXRs) form heterodimers with thyroid hormone receptors (TRs). RXRs increase DNA binding affinity of TRs and T3-mediated transactivation on positive T3 response elements (TREs). However, the role of RXRs on negative TREs, and the relation of RXRs to the dominant negative effect of mutant TRs, are not defined. To clarify the function of RXRs on negative TREs, we performed transient cotransfection studies using the rat glycoprotein hormone alpha promoter fused to luciferase gene (alphaLuc), and human TRH promoter fused to luciferase gene (TRH-Luc) as reporters. We found that the JEG-3 cell-alphaLuc system was very sensitive to TR regulation. Using TRbeta1 wild-type (WT) expression vector, 6.2 ng/well (170 ng/10 cm dish), and 0.2 ng/well (11 ng/10 cm dish) caused maximal, and half maximal, inhibition of Luc activities in the presence of 1 nM T3. A T3 dose dependent inhibition study was also performed. From these studies, we determined that the appropriate conditions in which to study alphaLuc transactivation, in a linear portion of the dose response curve, was using 0.8 ng/well TRbeta1 expression vector and 0.1 nM T3. Under these conditions, TRbeta1 mutant R316H (GH), but not G345R (Mf), showed a weak dominant negative effect at a 1:1 ratio in the presence of 0.1 nM T3 although neither mutant had detectable T3 binding affinity. Moreover this dominant negative effect of R316H on the alphaLuc reporter was enhanced in the presence of RXRgamma. Mutant G345R showed a stronger dominant negative effect than did R316H when using a double palindromic TRE fused to herpes simplex thymidine kinase-Luc reporter as a positive TRE. These results conform to the clinical features of R316H which is associated with apparent pituitary resistance of thyroid hormone (PRTH). Mutant R316H also showed a weak dominant negative effect with TRH-Luc at a 1:1 ratio in the absence or presence of RXRgamma. However RXRgamma did not enhance the dominant negative effect as it did using alphaLuc reporter gene. Electrophoretic gel mobility shift assay (EMSA) showed that RXR alpha augmented the DNA binding affinity of wild type and R316H TRs as heterodimers on the previously reported negative TREs of glycoprotein hormone alpha promoter, suggesting that RXR does not produce its response by removing TRs from these TREs. RXR alpha augmented DNA binding affinity of TRbeta1WT, and R316H showed a weaker heterodimer band than did the wild type in EMSA. Using the TRH-Luc reporter, basal activity was increased by wild type TRbeta1. However a TRbeta1 DNA binding domain mutant, (C127S) which can not bind to DNA, did not increase the basal activity. This indicates that DNA binding of the TR is required for increasing basal activity of TRH promoter. These results indicate that (1) RXR-TR heterodimers play a role in basal transactivation and T3 suppression of negatively regulated genes, and (2) RXRs increase the dominant negative effect of some mutant TRs on specific negative TREs. (3) This effect occurs without removing TRs from the TRE. (4) The differential dominant negative effect of mutant R316H (negative TRE > positive TRE) may explain, at least in part, the presentation of R316H as PRTH. (5) Augmentation of basal activity by wild type TRs on a negative TRE requires DNA binding.  相似文献   

12.
13.
THYROID hormone receptor beta-deficient (TRbeta-/-) mice have defective auditory-evoked brain stem responses (ABR). Since in vitro, TRbeta binds to DNA as homodimers or as heterodimers with retinoid X receptors (RXRs), we investigated whether the TRbeta-/- phenotype may reflect loss of RXR-TRbeta heterodimer or TRbeta homodimer function. Normal ABR thresholds were recorded in RXRbeta-/-, RXRgamma-/-, RXRalpha-/+ and RXR compound mutant mice. When RXR mutations were introduced onto TRbeta-/+ or TRbeta-/- backgrounds, thresholds were dictated solely by TRbeta and not RXR genotype. TRbeta-/-mice also over-produce thyroid hormones and thyroid stimulating hormone; however, levels of these hormones were unaltered by RXR mutations. This suggests that, contrary to in vitro models, RXRs may be dispensable and that TRbeta may function in vivo by an RXR-independent mechanism in the auditory system and pituitary-thyroid axis.  相似文献   

14.
Yeast chorismate mutase (EC 5.4.99.5) shows homotropic activation by the substrate, allosteric activation by tryptophan, and allosteric inhibition by tyrosine. In this study mutants of chorismate mutase have been found that remain sensitive to one allosteric effector (tryptophan) but insensitive to the other (tyrosine). These mutations are located in the catalytic domain: loop 220s (212-226) and helix 12 (227-251). The first example starts with the Thr-266 --> Ile mutant that had previously been shown to be locked in the activated R state. The additional mutation Ile-225 --> Thr unlocks the R state and restores the activation by tryptophan but not the inhibition by tyrosine. The second example refers to a molecular trigger for the switch between the T and R state: a hydrogen-bonded system, which stabilizes only the T state, from Tyr-234 to Glu-23 to Arg-157. Various mutants of Tyr-234, especially Tyr-234 --> Phe, are unresponsive to tyrosine but are activated by tryptophan. This separation of activation from inhibition may indicate a pathway for activation that is independent of the allosteric transition and may also be consistent with an intermediate structure between T and R states.  相似文献   

15.
We have studied the role of a highly conserved tryptophan and other aromatic residues of the thyrotropin-releasing hormone (TRH) receptor (TRH-R) that are predicted by computer modeling to form a hydrophobic cluster between transmembrane helix (TM)5 and TM6. The affinity of a mutant TRH-R, in which Trp279 was substituted by alanine (W279A TRH-R), for most tested agonists was higher than that of wild-type (WT) TRH-R, whereas its affinity for inverse agonists was diminished, suggesting that W279A TRH-R is constitutively active. We found that W279A TRH-R exhibited 3.9-fold more signaling activity than WT TRH-R in the absence of agonist. This increased basal activity was inhibited by the inverse agonist midazolam, confirming that the mutant receptor is constitutively active. Computer-simulated models of the unoccupied WT TRH-R, the TRH-occupied WT TRH-R, and various TRH-R mutants predict that a hydrophobic cluster of residues, including Trp279 (TM6), Tyr282, and Phe199 (TM5), constrains the receptor in an inactive conformation. In support of this model, we found that substitution of Phe199 by alanine or of Tyr282 by alanine or phenylalanine, but not of Tyr200 (by alanine or phenylalanine), resulted in a constitutively active receptor. We propose that a hydrophobic cluster including residues in TM5 and TM6 constrains the TRH-R in an inactive conformation via interhelical interactions. Disruption of these constraints by TRH binding or by mutation leads to changes in the relative positions of TM5 and TM6 and to the formation of an active form of TRH-R.  相似文献   

16.
17.
18.
19.
20.
Four different somatic mutations (F631C, T632I, D633E, and D633Y) in the putative 6th transmembrane helix of the human thyrotropin receptor (TSHR) were recently described in hyperfunctioning thyroid adenomas [Porcellini et al. (1994) J. Clin. Endocrinol. Metab. 79, 657-661]. We transiently expressed these mutant receptors in Cos-7 cells and measured [125I]TSH binding, basal and TSH-stimulated cAMP production, and phosphatidylinositol hydrolysis. The concentration of receptors expressed at the cell surface was lower for the mutants than for the wild type (WT) TSHR. Compared to the WT, all four mutant receptors caused a marked increase in basal cAMP levels, but did not increase basal production of inositol phosphates. This suggests that autonomous thyroid function and adenoma formation may be related to constitutive activation of the cAMP pathway alone. A cluster of conserved residues at the base of the 6th transmembrane helix of the TSHR and other glycoprotein hormone receptors appears important for maintaining an inactive receptor conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号