首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A color‐conversion method for a light‐emitting multi‐primary‐color display is proposed. While amulti‐primary‐color display uses four or more primary colors to reproduce a wide color gamut, multiple sets of primary‐color signals are needed to reproduce one color. Therefore, linear programming, which results in low power consumption, was adopted to uniquely determine the set of primary‐color signals. Although a highly accurate color conversion was achieved by using linear programming with low power consumption, it requires a very long time to convert colors of high‐resolution images. Therefore, by categorizing the color conversion of linear programming as a classification problem, colors are converted by using the decision‐tree method, which is a classification method. As a result, color conversion with high accuracy, low power consumption, and short conversion time was achieved.  相似文献   

2.
Abstract— In this paper, the resolution characteristics of multi‐primary‐color (MPC) display systems are analyzed. That four‐primary‐color (4PC) displays can increase the effective resolution for achromatic images in the luminance domain by a factor of two as compared to conventional RGB‐based displays with MPC‐specialized subpixel rendering, which is proposed in this paper, is demonstrated. Five‐ and six‐primary‐color (5PC and 6PC) display systems can reproduce denser luminance data than conventional RGB‐based display systems and solve a problem of MPC displays, viz. an increase of production costs and a decrease in the aperture ratio caused by increasing the number of subpixels in one pixel. This is an essential advantage of MPC display systems, which is related to the combination of the proposed color‐filter architecture and image processing. Thus, a completely new advantage of MPC display systems, in addition to their well‐known capabilities of color reproduction and power saving, is proposed.  相似文献   

3.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

4.
A method for determining the extents of a qualified viewing space (QVS) based on repeatable and reproducible luminance measurements of augmented and virtual reality near‐eye displays is described. This QVS mapping can also use other display performance metrics such as (1) Michelson contrast, (2) modulation transfer function, or (3) color as boundary condition parameters. We describe the use of a 4‐mm‐diameter entrance pupil, 1° to 2° field of view tele‐spectroradiometer, to determine the luminance and color uniformity of the virtual image. A 1‐mm‐diameter entrance pupil is used to map the QVS boundaries based on luminance at the center of the virtual image. The luminance measurement results from a pair of binocular augmented reality display glasses in three separate eye relief planes of the QVS of both eyes are presented. The data are further reduced to provide a perimeter profile of the QVS for the 50% of peak luminance boundary points in each eye relief plane.  相似文献   

5.
Abstract— Spectral color reproduction overcomes some inherent problems of colorimetric reproduction. An implementation of a spectral display for surface color reproduction, capable of reproducing a desired spectrum for each pixel, based on multi‐primary projection technology, is presented. A light source with a spectrum identical to that of the illumination is filtered by a positive linear combination of several color filters, which reproduces the reflectance spectra. The spectra of the color filters are tailored to span the space of possible surface spectra. Various methods for choosing the color filters vis‐à‐vis the required performance are discussed in detail. Soft‐proofing application is examined as a test case for the concept.  相似文献   

6.
Full‐color e‐paper displays that have a small color gamut encounter image tone distortions and contour artifacts in high‐saturation regions. To solve these issues, in this paper, we comprehensively measure the colorimetric responses of input image signals and demonstrate that the perceptual colorfulness in terms of chroma abnormally declines when the input saturation is beyond a certain value. Accordingly, saturation‐based tone‐mapping curves are developed to map the abnormal high saturation to the range that the display is able to normally render. By testing several test charts and natural images, the recoveries of the original image tones and the removals of the contour artifacts are experimentally verified. More important, by discussing how to conduct a database of tone‐mapping curves for different ambient lights and utilize the database for an unknown ambient light, the proposed method is proven to be completely ambient light adaptive.  相似文献   

7.
We present a simple and effective technique for absolute colorimetric camera characterization, invariant to changes in exposure/aperture and scene irradiance, suitable in a wide range of applications including image‐based reflectance measurements, spectral pre‐filtering and spectral upsampling for rendering, to improve colour accuracy in high dynamic range imaging. Our method requires a limited number of acquisitions, an off‐the‐shelf target and a commonly available projector, used as a controllable light source, other than the reflected radiance to be known. The characterized camera can be effectively used as a 2D tele‐colorimeter, providing the user with an accurate estimate of the distribution of luminance and chromaticity in a scene, without requiring explicit knowledge of the incident lighting power spectra. We validate the approach by comparing our estimated absolute tristimulus values (XYZ data in ) with the measurements of a professional 2D tele‐colorimeter, for a set of scenes with complex geometry, spatially varying reflectance and light sources with very different spectral power distribution.  相似文献   

8.
Abstract— The present paper describes a method for using more than three primaries in an additive‐primary display. The method ensures that each tristimulus specification can be produced in no more than one way, even if a non‐singular filter (i.e., one that does not reduce the dimensionality of color‐matching space) is interposed between the screen and the viewer. Starting with N primaries, the method uses only three at a time, but these may be composites — fixed linear combinations of the original N. As further insurance against on‐screen metamerism, a criterion on the primary spectra, based on the Binet‐Cauchy theorem, ensures that a triad of primaries keeps its right/left‐handed chromaticity ordering when a filter is interposed.  相似文献   

9.
Many works focus on multi‐spectral capture and analysis, but multi‐spectral display still remains a challenge. Most prior works on multi‐primary displays use ad‐hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content‐dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content‐independent multi‐spectral display achieved using superimposed projections with modified wide band primaries. We present a content‐independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi‐spectral display consisting of 9‐primaries using three modified conventional 3‐primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi‐spectral images at a high spectral accuracy.  相似文献   

10.
Abstract— A high‐luminance CNT‐FED character display using a simple line rib structure was constructed. The display panel had 48 × 480 dots and the subpixel pitch was 1 mm. The greatest benefit of a display using CNT technology is high luminance performance with low‐power consumption. The luminance of the green‐color dot wasca. 10,000 cd/m2 under 1/1 6 duty‐cycle driving at a 6‐kV anode voltage. The high luminance of the display panel can provide good visibility when installed even in outdoor locations, and the power consumption was ca. 4 W at the character displaying module. This, a CNT‐FED for character displays also has potential multifunctionality, which could be battery driven. It should be useful for public displays even under emergency no‐power conditions. In this work, a practical structure and process technologies for making ribs with reasonable cost were developed. The newly introduced 2‐mm‐tall line ribs as spacers were formed by using innovative production processes; i.e., the rib paste was pushed out of a multi‐slit nozzle, and the rib shape was formed by UV‐light irradiation. The developed panel structure and manufacturing processes also had the advantages of size flexibility and high production yield.  相似文献   

11.
Abstract— A new method for achieving full‐color capability for inorganic EL displays was developed, which combines electroluminescence with photoluminescence phenomena in the same device structure. In this display panel, the blue emission was obtained from the EL device by using the Eu‐doped barium thioaluminate phosphor material system, which was then used to generate green and red emission by the use of down‐conversion materials. The major advantages of the Color‐by‐Blue method (CBB) are the elimination of color‐balance control issues associated with the use of different electroluminescent phosphor materials for red, green, and blue with potentially different threshold voltages for the onset of luminance and the achievement of a low‐cost high‐yield manufacturing process.  相似文献   

12.
Abstract— Two pico‐projection systems, a monochrome green and a full‐color system, based on high‐efficiency OLED microdisplays (VGA; pixel size, 12 μm) are presented. Both optical systems are described by a numerical aperture of about 0.3, a magnification of 15x, and a working distance of 300–360 mm. The frequency limit of both systems is 42 cycles/mm at an image contrast of about 60%. The monochrome projection system with a volume smaller than 10 cm3 consists of one green OLED and a projection lens with five elements. The measured luminance in the image plane is about 0.061 lm. The image has a diagonal of 150 mm with a working distance of about 300 mm and has a considerable image contrast of 396:1. The second system combines three high‐brightness OLEDs, red, green, and blue colored, together with a projection lens and an image‐combining element, and an X‐Cube to achieve full‐color projection. The estimated luminance value for the three‐panel projection unit with an OLED luminance of 10,000 cd/m2 for each display will be about Φcalculated = 0.147 lm. In this paper, the system concepts, the optical designs, and the realized prototypes of the monochrome and full‐color projection system are presented.  相似文献   

13.
Abstract— A simple additivity model is often used as a basic model for digital‐display characterization. However, such a simple model cannot satisfy the needs of demanding color‐management applications all the time. On the other hand, systematic sampling of the color space and 3‐D interpolation is an expensive method in terms of measurement and computation time when precision is needed. This paper presents an enhanced method to characterize the XYZ‐to‐RGB transform of a digital display. This parametric method exploits the independence between the luminance variation of the electro‐optic response and the colorimetric responses for certain display types. The model is generally applicable to digital displays, including 3‐DMD projectors, single DMDs, CRTs, LCDs, etc., if the independence condition is satisfied. While the problem to solve is a 3‐D‐to‐3‐D transformation (from XYZ to RGB), the proposed parametric model is the composition of a 2‐D transform followed by a 1‐D transform. The 2‐D transform manages the chromatic aspects and, in succession, the 1‐D transform manages the luminance variations. This parametric digital model is applicable in the field of color management, with the objective of characterizing digital displays and applying a reference look such as a film look.  相似文献   

14.
Abstract— A high‐performance inorganic electroluminescence (EL) device has been successfully developed by using an EL structure with a thick dielectric layer (TDEL) and sputtered BaAl2S4:Eu blue phosphor. The luminance and efficacy were higher than 2300 cd/m2 and 2.5 lm/W at L60, 120 Hz, respectively. Furthermore, the luminance at L60, 1.2 kHz was more than 23,000 cd/m2. The phosphor layer has a single‐phase and a highly oriented crystalline structure. The phosphor also shows high stability in air. A 34‐in. high‐definition television (HDTV) has been developed by combining a TDEL structure and color‐conversion materials. The panels with an optimized color filter demonstrated a peak luminance of 350 cd/m2, a color gamut of more than 100% NTSC, and a wide viewing angle similar to that of plasma‐display panels. The high reproducibility of the 34‐in. panels using our pilot line has been confirmed.  相似文献   

15.
Abstract— A novel laser‐light‐source projector having the three outstanding features of high brightness, ultra‐short throw distance, and high color reproduction has been developed.These features have recently come to be required in the high‐end projector market. The technologies for the laser‐light‐source projectors fully utilize the advantages of lasers, such as high luminance, small étendue, and high color purity. By integrating a triple‐rod illumination system with a multi‐laser light source and an ultra‐wide‐angle projection system, the developed high‐efficiency optical system has achieved a brightness of 7000 lm and a throw ratio of 0.28 with an image size of 100–150 in. Another new technology, laser color processing (LCP), has offered vivid color reproduction which has a color gamut that is up to 180% wider than the BT.709 standard without appearing unnaturally colored. Furthermore, a speckle suppression effect produced by the multi‐laser light source has been demonstrated. In this paper, an overview of these newly developed technologies that are used in the novel laser‐light‐source projector is presented, and solutions to the issues of speckle noise and safety are presented.  相似文献   

16.
Abstract— As use of handheld thermal‐imaging cameras (TICs) becomes more prevalent in the first‐responder community, it is important that standard test metrics be available to characterize imaging performance. A key performance consideration is the quality of the image presented on the TIC display. This paper focuses on TICs that use liquid‐crystal displays to render an image for the user. Current research on TIC performance for first‐responder applications makes use of trained observers and/or composite‐video‐output‐signal measurements. Trained observer tests are subjective and composite video output tests do not evaluate the performance of the complete imaging system. A non‐destructive objective method was developed that tests the performance of the entire thermal‐imaging system, from the infrared sensor to the display. A thermal target was used to correlate the measured thermal imager composite video output signal with the luminance of the display. A well‐characterized charge‐coupled‐device (CCD) camera and digital recording device were used to measure the display luminance. An electro‐optical transfer function was determined that directly relates the composite video output signal to the luminance of the display, providing a realistic characterization of system performance.  相似文献   

17.
Abstract— A high‐luminance 1.8‐mm‐pixel‐pitch CNT‐FED for color character displays has been developed. The display panel has 32 × 256 color pixels, and the subpixel size is 0.6 × 1.8 mm. The display panel can provide good visibility when installed even in outdoor locations. The power consumption is low enough for the display to be battery driven. The practical application is the display of important messages regarding the evacuation from disaster areas, even under emergent no‐power conditions similar to the messages on vending machines.  相似文献   

18.
Abstract— Color characterization is an important step towards achieving accurate color on displays. The characterization process typically uses colorimetric or spectrophotometric instruments to measure displayed colors, and relates these to digital values driving the device. Such measurements can be impractical for consumer applications. This paper presents two techniques for characterizing a display's tone response with no colorimetric or spectrophotometric measurements. The first is a visual technique applicable to devices that exhibit a “gamma” response, such as the cathode‐ray tube. The novelty lies in the replacement of the standard luminance matching with gray‐balancing for the blue channel. This approach substantially reduces observer variation in the gamma estimates for the blue channel. The second technique is applicable for the more general case of devices that do not conform to the gamma response, such as LCDs. The visual task is augmented with a consumer digital camera used as a color‐capture device. The camera tone response is first characterized via a visual task. The characterized camera is then treated as a colorimeter and used to generate a tone‐response characterization for the display. Experiments conducted on projection displays demonstrate that satisfactory quality can be achieved while eliminating the need for costly and tedious measurement.  相似文献   

19.
We have successfully developed a quarter‐wave retardation film (QWF) for wide viewing angle 3D liquid crystal displays (3D‐LCDs) that provides high luminance, low crosstalk, low color change, and low head‐tilt‐angle dependency. It was found that the out‐of‐plane retardation (Rth) of the QWF in the LCD needs to be close to 0 nm in order to improve the 3D display properties at an off‐axis position and that the in‐plane retardation (Re) needs to be adjusted from 120 to 130 nm to achieve low color change with head tilting. We adopted a coating process for making our QWF because of its potential for retardation control. 3D‐LCDs with this QWF whose Rth was nearly zero had high performance and allowed off‐axis other than on‐axis.  相似文献   

20.
Abstract— A color management system (CMS) such as ICC profile or sRGB space have been proposed for color transformation and reproduction of cross media. In such a CMS, accurate colorimetric characterization of a display device plays a critical role in achieving device‐independent color reproduction. In the case of a CRT, colorimetric characterization based on a GOG model is accurate enough for this purpose. However, there is no effective counterpart in liquid‐crystal displays (LCDs) since the characterization of an LCD has many difficulties, such as channel interaction and non‐constancy of channel chromaticity. In this paper, a new method of display characterization is proposed which is applicable to the assessment of color reproduction of LCDs. The proposed method characterizes an electro‐optical transfer function considering both channel interaction and non‐constancy of channel chromaticity. Experimental results show that the proposed method is very effective in the colorimetry of LCDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号