首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
Mesoporous carbon nano-dendrites (MCNDs) with ultra-thin graphitic walls are synthesized by controlling the highly exothermic segregation reaction of silver acetylide into a carbon skeleton and silver vapor. The dendroid acetylides were quickly warmed to 150 °C emitting a brilliant flash of reddish orange light with a thunderous sound indicative of the sudden jump of the local temperature to higher than 2000 °C. This sudden heating boils off the silver from the main body, leaving carbon skeletons, the MCNDs. Raman spectra clearly indicate that the skeletons consist of mainly single-layer graphene walls. SEM and TEM images as well as EELS spectra show that the main bodies with ∼50 nm radii branches every 100-150 nm and is composed of cells with graphene walls. The MCNDs showed a BET surface area of 1610 m2/g. Cyclic voltammetry of a supercapacitor with MCND electrodes showed good rectangular curves, even at a scanning rate of 400 mV/s and a peak current density higher than 40 A/g, suggesting applicability for high current and high-speed charge-discharge capacitors for motor vehicles. These properties are attributed to the dendroid branching structure of the main body that allows fast and massive ion transport through the open channels between branches.  相似文献   

2.
Addition of small amounts (0.5-10 vol%) of multiwall carbon nanotubes (CNT) to thermoplastic elastomer Morthane produced polymer nanocomposites with high electrical conductivity (σ∼1-10 S/cm), low electrical percolation (?∼0.005) and enhancement of mechanical properties including increased modulus and yield stress without loss of the ability to stretch the elastomer above 1000% before rupture. In situ X-ray scattering during deformation indicated that these mechanical enhancements arise not only from the CNTs, but also from their impact on soft-segment crystallization. The deformation behavior after yielding of the nanocomposites, irrespective of CNT concentration, is similar to the unfilled elastomer, implying that the mechanistics of large deformation is mainly governed by the matrix. The relative enhancement of the Young's modulus of the nanocomposites is comparable to other elastomeric nanocomposites, implying that to the first order specific chemical details of the elastomeric system is unimportant.  相似文献   

3.
We investigated the growth behavior and morphology of vertically aligned carbon nanotubes (CNTs) on silicon (Si) substrates by direct current (DC) plasma enhanced chemical vapor deposition (PECVD). We found that plasma etching and precipitation of the Si substrate material significantly modified the morphology and chemistry of the synthesized CNTs, often resulting in the formation of tapered-diameter nanocones containing Si. Either low bias voltage (∼500 V) or deposition of a protective layer (tungsten or titanium film with 10-200 nm thickness) on the Si surface suppressed the unwanted Si etching during growth and enabled us to obtain cylindrical CNTs with minimal Si-related defects. We also demonstrated that a gate electrode, surrounding a CNT in a traditional field emitter structure, could be utilized as a protection layer to allow growth of a CNT with desirable high aspect ratio by preventing the nanocone formation.  相似文献   

4.
Mukul Kumar  Yoshinori Ando 《Carbon》2005,43(3):533-540
Single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs, respectively) of controlled diameter distribution were selectively grown by thermal decomposition of a botanical hydrocarbon, camphor, on a high-silica zeolite support impregnated with Fe-Co catalyst. Effects of catalyst concentration, growth temperature and camphor vapor pressure were investigated in wide ranges, and diameter distribution statistics of as-grown nanotubes was analyzed. High yields of metal-free MWNTs of fairly uniform diameter (∼10 nm) were grown at 600-700 °C, whereas significant amounts (∼30%) of SWNTs were formed at 850-900 °C within a narrow diameter range of 0.86-1.23 nm. Transmission electron microscopy and micro-Raman spectroscopy reveal that camphor-grown nanotubes are highly graphitized as compared to those grown from conventional CNT precursors used in chemical vapor deposition.  相似文献   

5.
Amorphous carbon nanostructures from chlorination of ferrocene   总被引:1,自引:0,他引:1  
The chlorination of ferrocene at different temperature conditions yields several carbon nanostructures, which were studied by means of transmission and scanning electron microscopies. Amorphous carbon nanotubes (α-CNTs) up to 10 μm long with thick walls and ∼15 nm of internal diameter were observed in a sample treated at 200 °C during 30 min. They consisted on ∼90% of carbon, while the remaining 10% consists on iron and chlorine. At this temperature, amorphous carbon bags and open-ended branches were also found. When chlorinating ferrocene at the same temperature but with longer reaction time (180 min), no α-CNTs were formed. At higher temperature (300 °C, 30 min), amorphous carbon bags were found, with lower content of residual chlorine and iron, and presenting thinner walls. In the sample treated at even higher temperature (900 °C, 30 min) the carbon nanobags (wall thickness ∼12 nm) were almost spherical and more graphitic, and without impurities.  相似文献   

6.
Nitrogen-doped horn-shaped carbon nanotubes (CNTs) have successfully been prepared by reducing pentachloropyridine with metallic sodium at 350 °C. A typical CNT has an open-end diameter of ∼2 μm, a close-end diameter of ∼0.3 μm, a wall thickness of ∼30 nm, and a length up to 8 μm. TEM observation indicates that the CNTs account for ∼30% of the products, and the rest is solid and hollow carbon nanospheres (CNSs) with a diameter of about 50-290 nm. Elemental analysis shows that the N/C atomic ratio of the carbon nanostructures is about 0.0208. XRD and HRTEM measurements reveal that the CNTs are amorphous. To understand the growth process and refine the growth condition, various control experiments have been finished. At last, a sodium-catalysis-reduction solid-liquid-solid growth mechanism of the CNTs has been suggested on the basis of the experiments.  相似文献   

7.
Monodispersed Fe-V-O nanoparticles were prepared by a liquid-phase synthesis to be used as catalysts for carbon nanotube (CNT) growth. Vertically aligned, dense CNTs have been grown from the highly active Fe-V-O nanoparticles by chemical vapor deposition. Diameter distribution of CNTs (3.7 ± 0.6 nm) was consistent with that of the original nanoparticles (3.1 ± 0.5 nm), and the value was smaller than those of other reported vertically aligned CNTs from as-prepared nanoparticles. TEM study showed that the CNTs consisted mainly of double-walled CNTs (single: 14%, double: 74%, and triple: 12%). The CNT diameter increased to 4.4 ± 0.8 nm as the growth temperature was increased from 810 to 870 °C. Energy dispersive X-ray spectroscopy of nanoparticles before and after the CNT growth revealed that the V content decreased from 7.2 to 2.7 at.%, suggesting that the segregation of Fe and V played an important role for the high activity of the Fe-V-O nanoparticles.  相似文献   

8.
Chemical vapor deposition (CVD) was used to achieve a homogeneous dispersion of carbon nanotubes (CNTs) on aluminum oxide (Al2O3) powder. This powder was plasma sprayed onto a steel substrate to produce a 96% dense Al2O3 coating with CNT reinforcement. Addition of 1.5 wt.% CNTs showed a 24% increase in the relative fracture toughness of the composite coating. The improvement in the fracture toughness is attributed to uniform dispersion of CNTs and toughening mechanism such as CNT bridging, crack deflection and strong interaction between CNT/Al2O3 interfaces. Wear and friction behavior of the CNT reinforced Al2O3 coating under dry sliding condition was investigated by ball-on-disk tribometer. With the increasing normal loads from 10 to 50 N, the wear volume loss and coefficient of friction of the coating increased, owing to transition from the mild to severe wear. Wear resistance of the Al2O3-CNT composite coating improved by ∼27% at 50 N. Coefficient of friction at 50 N was dependent on the competing phenomena of wear debris generation and graphitization due to pressure.  相似文献   

9.
The kinetics of carbon nanotube (CNT) synthesis by decomposition of CH4 over Mo/Co/MgO and Co/MgO catalysts was studied to clarify the role of catalyst component. In the absence of the Mo component, Co/MgO catalysts are active in the synthesis of thick CNT (outer diameter of 7-27 nm) at lower reaction temperatures, 823-923 K, but no CNTs of thin outer diameter are produced. Co/MgO catalysts are significantly deactivated by carbon deposition at temperatures above 923 K. For Mo-including catalysts (Mo/Co/MgO), thin CNT (2-5 walls) formation starts at above 1000 K without deactivation. The significant effects of the addition of Mo are ascribed to the reduction in catalytic activity for dissociation of CH4, as well as to the formation of Mo2C during CNT synthesis at high temperatures. On both Co/MgO and Mo/Co/MgO catalysts, the rate of CNT synthesis is proportional to the CH4 pressure, indicating that the dissociation of CH4 is the rate-determining step for a catalyst working without deactivation. The deactivation of catalysts by carbon deposition takes place kinetically when the formation rate of the graphene network is smaller than the carbon deposition rate by decomposition of CH4.  相似文献   

10.
We present an in-depth study of CNT growth on commercially-available woven alumina fibers, and achieve uniform growth of dense aligned CNTs on commercially-available cloths up to 5 × 10 cm in area. By systematically varying the catalyst concentration, catalyst pre-treatment time, and sample position within the tube furnace, we isolate key factors governing CNT morphology on fiber surfaces and classify these morphologies as related to the processing conditions. Synthesis employs a low-cost salt-based catalyst solution and atmospheric pressure thermal CVD, which are highly attractive approaches for commercial-scale processing. The catalyst solution concentration determines the uniformity and density of catalyst on the fibers, H2 exposure mediates formation of catalyst clusters, and thermal decomposition of the reactant mixture activates the catalyst particles to achieve uniform aligned growth. Under conditions for aligned CNT growth, uniform radially-aligned coatings are achieved with shorter CNT length, and these split into “mohawks” as the CNT length increases. Radially-aligned growth for 5 min adds a typical CNT mass fraction of 3.8% to the initial sample mass, and a uniform morphology exists throughout the weave. Composites prepared by standard layup techniques using these CNT “fuzzy” alumina fibers are attractive as integral armor layers having enhanced ballistic and impact performance, and serve as a model system for later implementation of this technology using carbon fibers.  相似文献   

11.
The remarkable properties of carbon nanotubes (CNTs) make them attractive for microelectronic applications, especially for interconnects and nanoscale devices. In this paper, we describe a microelectronics compatible process for growing high-aspect-ratio CNT arrays with application to vertical electrical interconnects. A lift-off process was used to pattern catalyst (Al2O3/Fe) islands to diameters of 13 or 20 μm. After patterning, chemical vapor deposition (CVD) was involved to deposit highly aligned CNT arrays using ethylene as the carbon source, and argon and hydrogen as carrier gases. The as-grow CNTs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CNTs have high purity, and form densely-aligned arrays with controllable array size and height. Two-probe electrical measurements of the CNT arrays indicate a resistivity of ∼0.01 Ω cm, suggesting possible use of these CNTs as interconnect materials.  相似文献   

12.
Lin Gan  Ruitao Lv  Baohua Li 《Carbon》2009,47(7):1833-419
Bamboo-shaped carbon nanotubes (BCNTs), which were synthesized through chemical vapor deposition by using cresol as the carbon source, were explored as Pt catalyst support in comparison with conventional carbon nanotubes (CNTs) and Vulcan XC carbon blacks. The pyrolysis of cresol produced a large amount of pentagon defects introduced in the walls of BCNTs, which could possess higher chemical activity and stronger interaction with metal particles. After a mild purification, the BCNTs exhibited more oxygen-containing functional groups than CNTs, as shown by Fourier transform infrared spectra and cyclic voltammetry. The formed oxygen-containing functional groups as well as the pentagon defects could act as uniform active sites for metal particle loading. By ethylene glycol reduction, highly dispersed Pt nanoparticles with a narrow size distribution of 2-3 nm were easily supported on BCNTs, as shown by transmission electron microscope. The Pt/BCNT catalyst showed higher electro-catalytic activity on the methanol oxidation than the Pt/CNT and Pt/Vulcan XC catalyst, which could be largely ascribed to the highly dispersed Pt nanoparticles due to the introduced pentagon defects in the tube-walls (comparing with Pt/CNT) and the graphitic nanotube network that could provide good electron conduction (comparing with Pt/Vulcan XC).  相似文献   

13.
A conducting layer using carbon nanotube (CNT) paste was prepared by mixing multi-walled CNT (MWNT), organic vehicles and spin on glass (SOG). The effect of SOG on the properties of the CNT paste was evaluated and compared to that of CNT paste with a glass frit. CNT powders were coated on the conducting CNT film either by sprinkling CNT powders onto the overall conducting layer area or by dropping a solution containing well dispersed CNTs. CNTs were strongly fixed by the formation of silica after heat treatment. The samples showed good field emission characteristics with turn-on electric fields of approximately 1.6 ∼ 2.2 V/μm. SOG was found to be an efficient inorganic binder for CNTs in the CNT paste.  相似文献   

14.
The multi-walled carbon nanotube (CNT)-embedded activated carbon nanofibers (ACNF/CNT) and activated carbon nanofibers (ACNF) were prepared by stabilizing and activating the non-woven web of polyacrilonitrile (PAN) or PAN/CNT prepared by electrospinning. Both ACNF and ACNF/CNT were partially aligned along the winding direction of the drum winder. The average diameter of ACNF was 330 nm, while that of ACNF/CNT was lowered to 230 nm with rough surface. This was attributed to the CNT-added polymer solution in the electrospinning process providing finer fibers by increasing the electrical conductivity compared with the CNT-free one. The specific surface area and electrical conductivity of ACNF were 984 m2/g and 0.42 S/cm, respectively, while those of ACNF/CNT were 1170 m2/g and 0.98 S/cm, respectively. PPy was coated on the electrospun ACNF/CNT (PPy/ACNF/CNT) by in situ chemical polymerization in order to improve the electrochemical performance. The capacitances of the ACNF and PPy/ACNF electrodes were 141 and 261 F/g at 1 mA/cm2, respectively, whereas that of PPy/ACNF/CNT was 333 F/g. This improvement in capacitance was attributed to the following: (i) the preparation of aligned nano-sized ACNF/CNT by electrospinning and the addition of CNT and (ii) the formation of a good charge-transfer complex by the PPy coating on the surface of the aligned nano-sized ACNF/CNT. The former leads to a good morphology and superior properties, such as a higher surface area, the formation of mesopores and an increase in electrical conductivity. The latter offers a refined three-dimensional network due to the highly porous structure between ACNF/CNT and PPy.  相似文献   

15.
Calcium tartrate doped with Ni and/or Co has been used as a catalyst source in the chemical vapor deposition synthesis of carbon nanotubes (CNTs). Thermolysis of doped calcium tartrate in an inert atmosphere was shown to yield Ni, Co or Ni-Co nanoparticles ∼6 nm in diameter dispersed in a calcium oxide matrix. The CNT synthesis was carried out by ethanol vapor decomposition at 800 °C. The structure of the products was characterized by transmission electron microscopy and Raman spectroscopy. It was found that Ni nanoparticles embedded in CaO provide the narrowest diameter distribution of CNTs, while the bimetallic Ni-Co catalyst allows the formation of the thinnest CNTs with the outer diameter of ∼2 nm. This type of CNT is more likely to be responsible for the lowest value of the turn-on field (∼1.8 V/μm) for the emission current detected for the latter sample.  相似文献   

16.
Multi-wall carbon nanotubes coated with polyaniline   总被引:3,自引:0,他引:3  
Multi-wall carbon nanotubes (CNT) were coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. The content of CNT in the samples was 0-80 wt%. Uniform coating of CNT with PANI was observed with both scanning and transmission electron microscopy. An improvement in the thermal stability of the PANI in the composites was found by thermogravimetric analysis. FTIR and Raman spectra illustrate the presence of PANI in the composites; no interaction between PANI and CNT could be proved. The conductivity of PANI-coated CNT has been compared with the conductivity of the corresponding mixtures of PANI and CNT. At high CNT contents, it is not important if the PANI coating is protonated or not; the conductivity is similar in both cases, and it is determined by the CNT. Polyaniline reduces the contact resistance between the individual nanotubes. A maximum conductivity of 25.4 S cm−1 has been found with PANI-coated CNT containing 70 wt% CNT. The wettability measurements show that CNT coated with protonated PANI are hydrophilic, the water contact angle being ∼40°, even at 60 wt% CNT in the composite. The specific surface area, determined by nitrogen adsorption, ranges from 20 m2 g−1 for protonated PANI to 56 m2 g−1 for neat CNT. The pore sizes and volumes have been determined by mercury porosimetry. The density measurements indicate that the compressed PANI-coated CNT are more compact compared with compressed mixtures of PANI and CNT. The relaxation and the growth of dimensions of the samples after the release of compression have been noted.  相似文献   

17.
A Serquis 《Carbon》2003,41(13):2635-2641
We investigated the growth of multi-wall carbon nanotubes (CNTs) catalyzed by SiO2-supported Co-Mo bi-metallic catalyst in flowing CO at 700 °C. We found that both Co and Mo are present in catalytic particles at the tips of CNTs, but their compositions vary from one catalytic particle to another and significantly deviate from the initial mixing composition. The Co concentration and distribution in the catalytic particle of a CNT largely determines the length of the CNT. The CNT growth process is carbon adsorption on exposed area of a catalytic particle and subsequent precipitation at the CNT-catalyst interface or open CNT wall edges. The encapsulation of a catalytic particle was found to occur by the growth of the open-edged graphene walls around the particle. Two types of long CNTs were observed: one with their CNT walls ended at the CNT-particle interface, and the other with their CNT walls open to the environment. The former have diameters similar to their catalytic particle size while the latter have larger diameters.  相似文献   

18.
Three-dimensional growth of well-aligned high-purity multiwall carbon nanotubes (CNTs) is achieved on silicon, nickel-coated silicon and cobalt-coated silicon substrates by thermal decomposition of a botanical carbon source, camphor, with different catalyst concentrations. Field emission study of as-grown nanotubes in a parallel-plate diode configuration suggests them to be an efficient emitter with a turn-on field of ∼1 V/μm (for 10 μA/cm2) and a threshold field of ∼4 V/μm (for 10 mA/cm2). Maximum current density lies in a range of 20-30 mA/cm2 at 5.6 V/μm with significant reversibility. Prolonged stability test of camphor-grown CNT emitters suggests a life time of ∼5 months under continuous operation. A new feature, metal-assisted electron emission from CNTs, has been addressed. Isolated nanotubes used as a cold cathode in a field emission microscope reveal the pentagonal emission sites and hence the atomic structure of the nanotube tips.  相似文献   

19.
High purity multi-walled carbon nanotubes were synthesized from aromatic hydrocarbons (benzene, toluene, xylene and trimethyl benzene) using ferrocene as the source of Fe catalyst. Screening studies of aromatic feeds at 675 °C, residence time of 14 s and Fe/C atom ratio of 1.07%, resulted in feedstock carbon conversion of 20-31%, CNT yield of 19.8-30.5%, and catalyst yield of 5.3-8.3 (g CNT/g catalyst). While the quality of the CNTs as determined by TGA, SEM, TEM and Raman spectroscopy, were high and comparable for different feedstocks; their carbon conversion, CNT yield and catalyst yield differed noticeably. A process optimization study for toluene feed showed that carbon conversion of more than 39%, CNT yield of 38.7% and catalyst yield of 18.3 can be achieved at temperature of 800 °C, Fe/C atom ratio of 0.47%, and residence time of 10-20 s.  相似文献   

20.
Spinnable carbon nanotube (CNT) arrays with different CNT structures have been synthesized using different growth methods and carbon sources, and long and stable fibers have been produced. Parameters of the nanotubes such as tube diameter, wall thickness, tube length and level of defects were found to play a more important role in the mechanical properties of the fibers than did the initial tube arrangement. To improve the fiber strength, as well as the modulus, the tubes must be long and have a small diameter and thin walls. The strongest fiber from double- and triple-walled CNTs is 1.23 GPa in strength, and 32% and 221% higher than those from CNTs with ∼6 and ∼15 walls (932 and 383 MPa), respectively. The fiber strength can be improved by 25%, up to 1.54 GPa, after poly(vinyl alcohol) infiltration with volume fraction of ∼20%. Our study also shows that C2H4 is superior to C2H2 as the carbon source for the growth of mainly double- and triple-walled CNTs, and therefore the spinning of high-strength fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号