首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
In order to achieve BaAl2O4 formation via combustion synthesis, two types of recipes were designed: single fuel recipes (urea, glycine, β-alanine or hexamethylenetetramine) and innovative fuel mixture recipes (urea+glycine, urea+β-alanine and urea+hexamethylenetetramine respectively). No combustion reactions were noticed in the case of single fuel recipes based on urea or hexamethylenetetramine. The only crystalline phase present in the case of the powders obtained in such a way was unreacted Ba(NO3)2. Glycine and β-alanine generated smoldering reactions, leading to the formation of black powders, which consist of Ba(NO3)2, BaCO3 and traces of BaAl2O4 (in the case of β-alanine). Fuel mixture recipes proved to be better than single fuel recipes, yielding BaAl2O4 as main crystalline phase. The specific surface area of the resulted powders ranges between 2.0 and 3.9 m2/g. The urea and glycine fuel mixture was the most efficient yielding BaAl2O4 with an average crystallite size of 60 nm.  相似文献   

2.
The influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals in Portland cement containing 3CaO·3Al2O3·CaSO4 mineral is reported in this paper. The results show that a suitable amount of CuO can lower the clinkering temperature and improve the burn-ability of clinkers. It can also promote the formation of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals and facilitate the coexistence of the two minerals in the clinkers. But adding 1% CuO to the raw material can cause the decomposition of 3CaO·3Al2O3·CaSO4.  相似文献   

3.
The influence of MgO on the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals in alite-sulphoaluminate cement is reported in this paper. The results show that adding a suitable amount of MgO can lower the clinkering temperature, promote the formation of Ca3SiO5 and 3CaO·3Al2O3·CaSO4 minerals, and help in the coexistence of the two minerals in the clinker. MgO may obviously decrease the formation of Ca3Al2O6, and increase the SiO2 content incorporated into the interstitial phase.  相似文献   

4.
Nanocrystalline Al2O3 powders containing different amounts of MgO (0.1–5.0 mol%) or added boehmite (AlOOH) have been synthesized by combustion synthesis from aluminium nitrate and magnesium nitrate, using urea or sucrose as fuels. The as synthesized alumina powders were deagglomerated, compacted by dry pressing and sintered at 1625 °C for 2 h. For comparison purposes, a commercial high purity α-Al2O3 powder (ACC) was also processed following the same route. The sintered materials were characterized for bulk density (BD), apparent porosity (AP), and water absorption (WA) capacity, microstructure using SEM, and XRD phase composition. In comparison to boehmite, the MgO had a considerable effect on the densification behaviour of combustion-synthesized powder.  相似文献   

5.
Diopside and Fe2O3 were introduced in alumina matrix ceramic materials. Large-scale fine structural alumina matrix ceramic guideway materials were fabricated by the technology of pressureless sintering, during which liquid phase sintering took place and new phases such as 3Al2O3·2SiO2, CaO·Al2O3·2SiO2 and CaO·6Al2O3 were produced by the chemical reactions taking place among alumina and the additives. The hardness, the fracture toughness and the bending strength of the guideway products were tested. The influences of diopside and Fe2O3 additions were studied by microstructural observations and mechanical properties evaluations. Meanwhile, the expected improvement of mechanical properties compared with pure alumina was indeed observed. The fracture mechanism and porosity of large-scale fine structural alumina matrix ceramic guideway materials were analyzed.  相似文献   

6.
Sr3Al2O6 was synthesized via citric acid precursor. The effects of the molar ratio of citric acid to total metal cations concentration (CA/M) on the formation of Sr3Al2O6 were investigated. Increasing the CA/M promoted the formation of Sr3Al2O6. Single-phase and well-crystallized Sr3Al2O6 was obtained from the CA/M = 1, CA/M = 2 and CA/M = 4 precursor at temperature 1200 °C, 1100 °C and 900 °C, respectively. Differential thermal analysis and thermogravimetric (DTA/TG), X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the precursors and the derived oxide powders. Sr3Al2O6 nanoparticles with a diameter of about 50-70 nm were obtained.  相似文献   

7.
Pulsed electric current sintering (PECS) was applied to obtain transparent ruby polycrystals. Al2O3-Cr2O3 powder mixture was prepared by drying an aqueous slurry consisting of Al2O3 and Cr(NO3)3 followed by PECS consolidation in vacuum at a sintering temperatures ranging from 1100 to 1300 °C with various heating rates between 2 and 100 °C/min and under an applied pressures from 40 to 100 MPa. Slow heating rate and high-pressure lead to highly densified and transparent Cr-doped Al2O3 polycrystals at sintering temperature of 1200 °C.  相似文献   

8.
Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on sintering. Maximum density (97%) was achieved at 1630 °C. Vickers hardness was 17.7 GPa after sintering at 1630 °C. SEM revealed that the SiC particles were well distributed throughout the composite microstructures. The precursors and the resultant powders were characterized by XRD, STA and SEM.  相似文献   

9.
Pure K0.5Na0.5NbO3 powders were prepared at low temperatures by an efficient method using Na2CO3, K2CO3 and Nb2O5 as raw materials and urea as fuel. The phase evolution of the powders was investigated by X-ray diffractometer (XRD) and thermo gravimetric analysis-differential scanning calorimeter (TG-DSC). The phase composition and morphology of the powders were characterized by electron probe microanalysis (EPMA) and scanning electron microscope (SEM), respectively. The results reveal that single-phase K0.5Na0.5NbO3 powder can be obtained at 550 °C by the method. The as-prepared powder is stoichimetric, fine and well-developed.  相似文献   

10.
LaMgAl11O19–Yb3Al5O12 ceramic composites were prepared by pressureless sintering process at 1700 °C for 10 h in air. The microstructure and thermophysical properties of the composites were characterized by X-ray diffraction, scanning electron microscopy, high-temperature dilatometer and laser flash diffusivity measurements. LaMgAl11O19–Yb3Al5O12 ceramic composites are composed of magnetoplumbite and garnet structures. LaMgAl11O19–Yb3Al5O12 ceramic composites exhibit typical linear increase in thermal expansion with the increase of temperature. The measured thermal diffusivity gradually decreases with increasing temperature. Thermal conductivity of LaMgAl11O19–Yb3Al5O12 ceramic composites is in the range of 2.6–3.9 W·m−1·K−1 from room temperature to 1200 °C.  相似文献   

11.
LiNi0.5Co0.5VO4 nano-crystals were solvothermally prepared using a mixture of LiOH·H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O and NH4VO3 in isopropanol at 150–200 °C followed by 300–600 °C calcination to form powders. TGA curves of the solvothermal products show weight losses due to evaporation and decomposition processes. The purified products seem to form at 500 °C and above. The products analyzed by XRD, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) and atomic absorption spectrophotometer (AAS) correspond to LiNi0.5Co0.5VO4. V–O stretching vibrations of VO4 tetrahedrons analyzed using FTIR and Raman spectrometer are in the range of 620–900 cm−1. A solvothermal reaction at 150 °C for 10 h followed by calcination at 600 °C for 6 h yields crystals with lattice parameter of 0.8252 ± 0.0008 nm. Transmission electron microscope (TEM) images clearly show that the solvothermal temperatures play a more important role in the size formation than the reaction times.  相似文献   

12.
In this work we report results of NOx adsorption and diesel soot combustion on a noble metal promoted K/La2O3 catalyst. The fresh-unpromoted solid is a complex mixture of hydroxide and carbonate compounds, but the addition of Rh favors the preferential formation of lanthanum oxycarbonate during the calcination step. K/La2O3 adsorbs NOx through the formation of La and K nitrate species when the solid is treated in NO + O2 between 70 and 490 °C. Nitrates are stable in the same temperature range under helium flow. However, they become unstable at ca. 360 °C when either Rh and/or Pt are present, the effect of Rh being more pronounced. Nitrates decompose under different atmospheres: NO + O2, He and H2. The effect of Rh might be to form a thermally unstable complex (Rh–NO+) which takes part both in the formation of the nitrates when the catalyst is exposed to NOx and in the nitrates decomposition at higher temperatures. Regarding soot combustion, nitrates react with soot with a temperature of maximun reaction rate of ca. 370 °C, under tight contact conditions. This temperature is not affected by the presence of Rh, which indicates that the stability of nitrates has little effect on their reaction with soot.  相似文献   

13.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

14.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

15.
Fine particles of anatase were suspended in solutions of ammonium alum with Al2O3/TiO2 molar ratios from 0.1:1 to 7:1. By spray drying the suspensions and calcining the spray-dried powders, Al2O3-TiO2 composite particles were obtained. The results show that after the spray drying, coatings of ammomium alum are formed on the surface of the anatase particles, leading to composite precursor powders (CCPs) with larger particle sizes. Upon calcining the CCPs, ammomium alum pyrolyzes to amorphous Al2O3 and anatase transforms into rutile. Both are mainly responsible for the observed particle size reductions as well as the densification of each composite particle. The in-situ formed α-Al2O3 and rutile may have higher reactivities, forming aluminum titanate at 1150 °C, about 130 °C lower than the theoretical temperature for the formation of Al2TiO5 by solid reaction. The reaction between α-Al2O3 and rutile starts from the interface between the anatase and the alum coating and mainly takes place in the single particles formed by spray drying. The molar ratio of Al2O3 to TiO2 influences the final crystalline phases in the composite powders, but not stoichiometrically.  相似文献   

16.
The Se(VI)-analogues of ettringite and monosulfate, selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O), and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O) were synthesised and characterised by bulk chemical analysis and X-ray diffraction. Their solubility products were determined from a series of batch and resuspension experiments conducted at 25 °C. For selenate-AFt suspensions, the pH varied between 11.37 and 11.61, and a solubility product, log Kso=61.29±0.60 (I=0 M), was determined for the reaction 3CaO·Al2O3·3CaSeO4·37.5H2O+12 H+⇔6Ca2++2Al3++3SeO42−+43.5H2O. Selenate-AFm synthesis resulted in the uptake of Na, which was leached during equilibration and resuspension. For the pH range of 11.75 to 11.90, a solubility product, log Kso=73.40±0.22 (I=0 M), was determined for the reaction 3CaO·Al2O3·CaSeO4·xH2O+12 H+⇔4Ca2++2Al3++SeO42−+(x+6)H2O. Thermodynamic modelling suggested that both selenate-AFt and selenate-AFm are stable in the cementitious matrix; and that in a cement limited in sulfate, selenate concentration may be limited by selenate-AFm to below the millimolar range above pH 12.  相似文献   

17.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

18.
The synthesis of ZrW2O8 from different kinds of mixtures containing ZrO2–WO3, ZrO(NO3)2·2H2O–WO3, ZrCl2O·8H2O–WO3, and ZrO2–(NH4)10W12O41·5H2O was investigated, and the kinetics was analyzed using JMA equation. It was found that ZrO(NO3)2·2H2O, ZrCl2O·8H2O H2O and (NH4)10W12O41·5H2O that were used as inorganic precursors formed ZrO2 and WO3 after firing above 500 °C. The content of ZrW2O8 obtained by firing the mixtures is influenced by the kinds of precursors as well as mixing methods. The formation rate of ZrW2O8 depends on homogeneity related to mixing methods as well as the particle size of starting powders. Phase-pure ZrW2O8 is obtained from the ZrCl2O·8H2O–WO3 mixtures at 1200 °C for 4 h, which is much shorter time than in the case of conventional ZrO2–WO3 mixtures. In the reaction kinetics of ZrO2–WO3 system, the Avrami exponent (n) is ∼0.5 above 1175 °C, indicating that the reaction is controlled by the diffusion-controlled reaction.  相似文献   

19.
In this investigation, a comparative study for a NO X storage catalytic system was performed focusing on the parameters that affect the reduction by using different reductants (H2, CO, C3H6 and C3H8) and different temperatures (350, 250 and 150 °C), for a Pt/BaO/Al2O3 catalyst. Transient experiments show that H2 and CO are highly efficient reductants compared to C3H6 which is somewhat less efficient. H2 shows a significant reduction effect at relatively low temperature (150 °C) but with a low storage capacity. We find that C3H8does not show any NO X reduction ability for NO X stored in Pt/BaO/Al2O3 at any of the temperatures. The formation of ammonia and nitrous oxide is also discussed.  相似文献   

20.
Interactions between a poly(vinyl)silazane and Al2O3 or Y2O3-stabilised ZrO2 fillers were studied during the fabrication of polysilazane-derived bulk ceramics in order to investigate the influence of oxide fillers on resulting properties. Specimens were produced by coating of the filler powders with the polysilazane, warm-pressing of the resulting composite powders, and pyrolytic conversion in flowing N2 at various temperatures between 1000 °C and 1400 °C. Significant differences in densification were observed, depending on the filler used. Reactions between the polysilazane-derived matrix and Al2O3 or ZrO2 at temperatures ≥1300 °C resulted in the formation of Si5AlON7 or ZrSiO4, respectively. Reactivity in the polysilazane-derived component was a result of SiO2 contamination caused primarily by adsorbed species on the filler particle surface. Knowledge of polysilazane/filler interface processes is found to be decisive for the prediction of properties such as shrinkage and porosity, which heavily influence performance of a material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号