首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In 1993 legislation is being enacted throughout the European Community (EC) that will require the maximum temperature of pork carcasses to be below 7°C before cutting or transportation. Results from a survey of UK abattoirs are summarized to highlight the problems and inadequacies of current commercial chilling systems. Design data are presented for conventional pork-chilling systems, which detail the effects of air temperature, air velocity and carcass weight on chilling times. Four novel or modified chilling systems are discussed: ultra-rapid chilling with air at −30°C; immersion chilling in brine at 0°C; ice-bank chilling in humid air at 2°C; and spray chilling in two stages, at 10°C for 2 h followed by 4°C for 21 h. The potential of such systems for the acceleration of chilling rates and for substantial weight savings is identified.  相似文献   

2.
Peach fruit (Prunus persica L. cv. ‘Miraflores’) harvested at the firm-ripe stage, treated or not with 2 g l−1 iprodione, were cooled or not at 1°C and ripened at 15 or 20°C and 95% RH for 10 days. During ripening, weight loss, fungal development and changes in quality parameters (firmness, soluble solids content, titratable acidity, pH and ground and flesh color), and carbon dioxide and ethylene production were monitored. Cooling alone or combined with iprodione avoided Rhizopus nigricans decay during ripening at either ripening temperatures. A skin damage not previously reported on fungicide treated peach was observed at 20°C. Cooled fruit ripened at 15°C showed an anomalous respiration rate and ethylene production after the climacteric peak, a loss of firmness and a drop in titratable acidity after 7 days of storage, and reduced endo-polygalacturonase activity in presence of continuous pectinmethylesterase activity during the first week. Cooling before ripening at 20°C led to the best flavor without excessive total losses. These results helped in the optimization of warming cycles during cold storage used to avoid chilling injuries development on peaches.  相似文献   

3.
In this study, the freezing time and rate of 1 cm3 cauliflower floret samples were determined under different freezing conditions in an air blast freezer. Four different air temperatures (−20, −25, −30 and −35°C) and six different air velocities (70, 131, 189, 244, 280 and 293 m min−1) were applied in the freezer, and the freezing rate and time of cauliflower pieces were determined under each condition. The freezing time of cauliflower samples frozen with cold air at −20°C and 280 m min−1 was similar to that of samples frozen with cold air at −35°C and 70 m min−1. When the velocity of air was increased from 70 m min−1 to 293 m min−1, the freezing time was approximately halved.  相似文献   

4.
The effect of salt concentration on the freezing point of meat simulants   总被引:2,自引:0,他引:2  
Accurate data on the initial freezing point of cured meat is required to predict freezing rates or identify optimal slicing temperatures. However, little data was found in the literature. Experiments were therefore carried out using the ‘Karlsruhe test substance’ (‘Tylose’) with varying salt concentrations as a cured meat substitute. Initial freezing points were −1.4, −3.1, −4.1, −5.2 and −6.3 °C at salt contents of 0.5, 2, 3, 4 and 5 kg salt/100 kg sample, respectively. These values were within ±0.5 °C of published values for cured pork and within ±0.9 °C of theoretical predictions. Modifying the salt content of Tylose is therefore a simple way of determining the initial freezing point of cured lean meats, and Tylose modified in this way can be used to simulate the freezing of cured meat.  相似文献   

5.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

6.
The freezing process is widely used in the food industry. In the 70s, French regulation authorities have created in collaboration with the food industry the concept of «surgélation» process with the objective of improving the image of high quality frozen foods. The process of “surgélation” which could be translated as “super freezing” corresponds to a freezing process for which a final temperature of −18 °C must be reached “as fast as possible”. This concept was proposed in opposition to a conventionally “freezing” process for which no specific freezing rate is expected and the final storage temperature can be of −12 °C only. The objective of this work is to propose a methodology to evaluate the mean amount of frozen ice in a complex food as a function of temperature and to deduce a target temperature that must be considered as the temperature for which the food may be considered as “frozen”. Based on the definition proposed by the IIF-IIR red book, this target temperature has been defined as the temperature for which 80% of the freezable water is frozen. A case study is proposed with a model food made of two constituents.  相似文献   

7.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

8.
This study deals with the chilling of rabbit carcasses with constant or time-variable air properties, this latter situation being closer to industrial chilling conditions. The experiments have been carried out with carcasses with weights in the range of 0.8–2.0 kg (1) in constant chilling conditions, 55 trials using six carcasses each, covering the following range: air velocity 0.3–2 m s−1, air temperature −3 to 10°C, relative humidity 70–90%, and (2) nine trials, each using two carcasses, have been performed with time-variable air velocity, between 0.5 and 2.0 m s−1, or time-variable air temperature, between −5 and +5°C. The analysis of the kinetics was based on the slopes of the curves of the dimensionless temperature logarithm versus time. The influence of the carcass weight and of the air properties was assessed. A hidden variability of the cooling conditions was evidenced and explained by water evaporation. A model, based on analytical solutions relative to an infinite cylinder, was adapted to take into account the variation of the chilling conditions. A shape factor and an equivalent surface area have been fitted from the experiments performed with constant chilling condition. The calculated results were compared with the measurements for both constant and time-variable chilling conditions. The average difference between calculated and measured temperature kinetics was in any case lower than 1°C. The weight loss, calculated as a percentage of the initial weight, was predicted with an accuracy of 0.1%. The relative errors in chilling times were lower than 9%.  相似文献   

9.
Convective boiling heat transfer coefficients of pure refrigerants (R22, R32, R134A, R290, and R600a) and refrigerant mixtures (R32/R134a, R290/R600a, and R32/R125) are measured experimentally and compared with Gungor and Winterton correlation. The test section is made of a seamless stainless steel tube with an inner diameter of 7.7 mm and is uniformly heated by applying electric current directly to the tube. The exit temperature of the test section was kept at 12°C ± 0.5°C for all refrigerants in this study. Heat fluxes are varied from 10 to 30 kW m−2 and mass fluxes are set to the discrete values in the range of 424–742 kg m−2 s−1 for R22, R32, R134a, R32/R134a, and R32/R125; 265–583 kg m−2 s−1 for R290, R600a, and R290/R600a. Heat transfer coefficients depend strongly on heat flux at a low quality region and become independent as quality increases. The Gungor and Winterton correlation for pure substances and the Thome-Shakil modification of this correlation for refrigerant mixtures overpredicts the heat transfer coefficients measured in this study.  相似文献   

10.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels with CO2. The test section is made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm and with lengths of 2000 and 3000 mm, respectively, and it is uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 20–40 kW m−2, a mass flux range of 200–600 kg m−2 s−1, saturation temperatures of 10, 0, −5, and −10 °C and quality ranges of up to 1.0. Nucleate boiling heat transfer contribution was predominant, especially at low quality region. The reduction of heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux, mass flux and saturation temperature, and with a smaller inner tube diameter. The experimental heat transfer coefficient of CO2 is about three times higher than that of R-134a. Laminar flow appears in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for CO2 was developed with 8.41% mean deviation.  相似文献   

11.
Two-phase pressure drop of R-410A in horizontal smooth minichannels   总被引:2,自引:0,他引:2  
Convective boiling pressure drop experiments were performed in horizontal minichannels with a binary mixture refrigerant, R-410A. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively. This test section was uniformly heated by applying electric current directly to the tubes. Experiments were performed at inlet saturation temperature of 10 °C, mass flux ranges from 300 to 600 kg m−2 s−1 and heat flux ranges from 10 to 40 kW m−2. The current study showed the significant effect of mass flux and tube diameter on pressure drop. The experimental results were compared against 15 two-phase pressure drop prediction methods. The homogeneous model predicted well the experimental pressure drop, generally. A new pressure drop prediction method based on the Lockhart–Martinelli method was developed with 4.02% mean deviation.  相似文献   

12.
This paper presents heat transfer data for a multiport minichannel heat exchanger vertically mounted as an evaporator in a test-rig simulating a small water-to-water heat pump. The multiport minichannel heat exchanger was designed similar to a shell-and-tube type heat exchanger, with a six-channel tube of 1.42 mm hydraulic diameter, a tube-side heat transfer area of 0.777 m2 and a shell-side heat transfer area of 0.815 m2. Refrigerant propane with a desired vapour quality flowed upward through the tubes and exited with a desired superheat of 1–4 K. A temperature-controlled glycol solution that flowed downward on the shell-side supplied the heat for the evaporation of the propane. The heat transfer rate between the glycol solution and propane was controlled by varying the evaporation temperature and propane mass flow rate while the glycol flow rate was fixed (18.50 l min−1). Tests were conducted for a range of evaporation temperatures from −15 to +10 °C, heat flux from 2000 to 9000 W m−2 and mass flux from 13 to 66 kg m−2 s−1. The heat transfer coefficients were compared with 14 correlations found in the literature. The experimental heat transfer coefficients were higher than those predicted by many of the correlations. A correlation which was previously developed for a very large and long tube (21 mm diameter and 10 m long) was in good agreement with the experimental data (97% of the data within ±30%). Several other correlations were able to predict the data within a reasonable deviation (within ±30%) after some adjustments to the correlations.  相似文献   

13.
An updated version of the Kattan–Thome–Favrat flow pattern based, flow boiling heat transfer model for horizontal tubes has been developed specifically for CO2. Because CO2 has a low critical temperature and hence high evaporating pressures compared to our previous database, it was found necessary to first correct the nucleate pool boiling correlation to better describe CO2 at high reduced pressures and secondly to include a boiling suppression factor on the nucleate boiling heat transfer coefficient to capture the trends in the flow boiling data. The new method predicts 73% of the CO2 database (404 data points) to within ±20% and 86% to within ±30% over the vapor quality range of 2–91%. The database covers five tube diameters from 0.79 to 10.06 mm, mass velocities from 85 to 1440 kg m−2 s−1, heat fluxes from 5 to 36 kW m−2, saturation temperatures from −25 °C to +25 °C and saturation pressures from 1.7 to 6.4 MPa (reduced pressures up to 0.87).  相似文献   

14.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

15.
Firm-breaker and firm-mature peaches (Prunus persica L. Batsch cv. ‘Paraguayo’) were conventionally stored for 4 weeks at 2°C and 90–95% relative humidity or subjected to intermittent warming cycles of 1 day at 20°C every 6 days of storage at 2°C. Warming periods induced ripening (reduced flesh firmness, extractable juice and titratable acidity), while during continuous storage abnormal values of these parameters were found. After 2 weeks at 2°C and particularly after the subsequent 3 days at 20°C, woolliness and to a lesser extent, vitrescence and dryness of the cortical tissue were detected. Severe levels of these disorders were found more frequently in firm-breaker than in firm-mature fruits, which mainly developed vitrescence. Three cycles of intermittent warming prevented chilling injuries but increased weight loss and senescence symptoms. Compared with conventional storage, intermittent warming increased the shelf-life of firm-mature and firm-breaker peaches by 1 and 2 weeks, respectively. Some considerations on the commercial application of the intermittent warming technique are included.  相似文献   

16.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

17.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

18.
This study proposes dimensionless correlations for predicting the properties of frost formed on a cold plate. Frosting experiments are carried out to obtain the correlations with various environmental parameters including the air temperature, air velocity, absolute humidity, and cooling plate temperature. The thickness, density, surface temperature, effective thermal conductivity, average heat and mass transfer coefficients of the frost layer are correlated as functions of the Reynolds number, Fourier number, absolute humidity, and dimensionless temperature by using a dimensional analysis. The correlations proposed in this study agree well with the experimental data within a maximum error of 10%, and can be used to predict the average frost properties in the following ranges: the air temperature of 5–15 °C, air velocity of 1.0–2.5 m s−1, absolute humidity of 0.00322–0.00847 kg kga−1, and cooling plate temperature of −35–−15 °C.  相似文献   

19.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

20.
Experiments on flow condensation have been conducted with both pure R32, R134a and their mixtures inside a tube (10 m long, 6 mm ID), with a mass flux of 131–369 kg m−2s−1 and average condensation temperature of 23–40°C. The experimental heat transfer coefficients are compared with those predicted from correlations. The maximum mean heat transfer coefficient reduction (from a linear interpolation of the single component values) occurs at a concentration of roughly 30% R32 for the same mass flux basis, and is approximately 20% at Gr = 190 kg m−2s−1, 16% at Gr = 300 kg m−2s−1. Non-ideal properties of the mixture have a certain, but relatively small, influence on the degradation. Among others, temperature and concentration gradients, slip, etc. are also causes of heat transfer degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号