首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
采用单辊快淬法制备Fe79Zr9B12和Fe76Zr9B15非晶合金薄带,并对两合金进行不同温度下热处理。利用差热分析仪(DTA)、X射线衍射仪(XRD)和振动样品磁强计(VSM)研究Fe79Zr9B12合金和Fe76Zr9B15合金的晶化行为和磁性能。结果表明,Fe79Zr9B12合金和Fe76Zr9B15合金的晶化激活能分别为404.42 kJ/mol和370.75 kJ/mol。晶化初期,有α-Mn型相和α-Fe相从Fe79Zr9B12非晶合金基体中析出,Fe23B6型相和α-Fe相从Fe76Zr9B15非晶合金基体中析出。α-Mn型相和Fe23B6型相均为亚稳相,进一步高温热处理后,α-Mn型相转变为α-Fe相,Fe23B6型相转变为α-Fe相、Fe2B相和Fe3B相。Fe79Zr9B12合金的矫顽力(Hc)在600℃退火后突然增大,继续高温退火,Hc下降;Fe76Zr9B15合金的Hc随着退火温度的升高持续增大。两种合金矫顽力随退火温度的变化与退火后合金的微观结构密切相关。  相似文献   

2.
采用单辊快淬法制备Fe78Co2Zr8Nb2B9M1(M=Ta、Cu)非晶合金薄带,在不同温度下对合金进行等温热处理。利用DTA、XRD、TEM、VSM和阻抗分析仪研究合金的热行为、微观结构、磁性能及巨磁阻抗效应。结果表明,晶化初期,Fe78Co2Zr8Nb2B9Ta1非晶合金析出α-Mn亚稳相和α-Fe(Co)相,Fe78Co2Zr8Nb2B9Cu1非晶合金仅析出α-Fe(Co)相。600℃退火后的Fe78Co2Zr8Nb2B9Cu1合金中晶化相的平均晶粒尺寸小于Fe78Co2Zr8Nb2B9Ta1合金。合金的M s均随退火温度的升高而逐渐增大。Fe78Co2Zr8Nb2B9Ta1合金的H c在600℃退火后明显增大,这与α-Mn型相的析出有关;而Fe78Co2Zr8Nb2B9Cu1合金的H c在600℃退火后达到极小值。合金的GMI max值随退火温度增加先上升后下降。Fe78Co2Zr8Nb2B9Cu1合金具有比Fe78Co2Zr8Nb2B9Ta1合金更显著的GMI效应。  相似文献   

3.
采用单辊快淬法制备Fe80Zr10B10非晶合金,并对该合金进行不同温度及不同保温时间热处理。利用X射线衍射仪(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)对合金的晶化过程和磁性能进行测试分析。结果表明:Fe80Zr10B10非晶合金经550℃退火保温不同时间,仅析出α-Fe相。经600℃退火,保温1 min后晶化产物为α-Fe相和χ相(α-Mn型相),χ相为亚稳相,随保温时间延长,χ相转变为α-Fe相。经650℃退火,保温1 min的晶化产物为Laves C14(λ)相,随保温时间增加,λ相向α-Fe相转变,并伴有Fe3Zr相和Fe2Zr相析出。合金经550℃退火,矫顽力(Hc)随保温时间的延长变化不大,比饱和磁化强度(Ms)逐渐增大。600℃退火,矫顽力(Hc)在合金保温10 min后达到最大值然后减小,比饱和磁化强度(Ms)在合金保温10 min后达到最小值,然后增大。650℃退火,矫顽力(Hc)随保温时间的增加而减小,比饱和磁化强度(Ms)逐渐增大。  相似文献   

4.
采用单辊急冷法制备了(Fe0.58Co0.42)73Cr17Zr10非晶薄带,并对该合金进行等温退火。用XRD、AFM、VSM研究退火温度对(Fe0.58Co0.42)73Cr17Zr10非晶合金的组织结构和磁性能的影响。结果表明:该合金晶化析出过程为:Am→α-Fe(Co)+Am'→α-Fe(Co)+Cr Fe4+Fe3Ni2+Cr2Zr+未知相。500℃和610℃退火后薄带表面的AFM观察表明:AFM图片所呈现的颗粒尺寸要比用Scherrer法测得的α-Fe(Co)纳米晶尺寸大得多,这是典型的包裹晶粒现象。在低于晶化峰值温度(Tp)退火,由于铁磁性α-Fe(Co)相的析出,合金的饱和磁化强度Ms随退火温度的升高大幅上升;当退火温度高于Tp时,由于α-Fe(Co)相的粗化和析出相的析出和长大,Ms急剧下降,在635℃退火能获得最好磁性能,其Ms=126.2 emu/g。  相似文献   

5.
采用单辊快淬法制备(Fe1-xCox)76Zr9B15(x=0,0.25,0.5)非晶合金薄带,并对3种合金进行不同温度热处理。利用差热分析仪(DTA)、X射线衍射仪(XRD)和振动样品磁强计(VSM)研究3种合金的晶化行为、微观结构和磁性能。结果表明,Fe76Zr9B15、Fe57Co19Zr9B15和Fe38Co38Zr9B15合金的晶化激活能分别为363.50、434.86和536.33 k J/mol。Fe76Zr9B15非晶合金的初始晶化产物为Fe23B6型相和α-Fe相,Fe57Co19Zr9B15非晶合金的初始晶化产物为α-Mn型相和α-Fe(Co)相,Fe38Co38Zr9B15非晶合金的初始晶化产物为α-Fe(Co)相。随着热处理温度的增加,(Fe1-xCox)76Zr9B15(x=0,0.25,0.5)合金的矫顽力随各自晶化产物的不同而发生改变。  相似文献   

6.
利用熔体快淬法制备了(Nd Pr)6Fe79B15和(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15非晶带。通过X射线衍射(XRD)和差热分析(DSC),并借助Kempen模型和Kissinger方程,研究了合金的非晶晶化过程及非等温晶化动力学。结果表明,与(Nd Pr)6Fe79B15合金相比,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金的非晶形成能力明显提高,在9 m/s的辊速下获得了厚度为100μm以上的非晶厚带。2种合金的非晶厚带具有不同的晶化过程及晶化动力学机制。(Nd Pr)6Fe79B15合金的晶化分4步完成:非晶相(A)→Nd2Fe23B3+A’→α-Fe+Fe3B+Nd2Fe23B3’→α-Fe+Fe3B+Nd2Fe14B→α-Fe+Fe3B+Nd2Fe14B+Nd1Fe4B4;而(Nd Pr,Dy)6Fe74.5Co3-Cu0.5Zr1B15合金的晶化分两步完成:非晶相(A)→Fe3B+A’→α-Fe+Fe3B+Nd2Fe14B。与(Nd Pr)6Fe79B15合金由界面控制的多晶型晶化不同,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金第1步为界面控制的多晶型晶化,第2步则以扩散控制的共晶型晶化为主。由于退火后组织结构的细化和改善,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金带的磁性能明显优于(Nd Pr)6Fe79B15合金带。  相似文献   

7.
采用单辊快淬法制备一系列不同名义成分的FeZrB合金样品,并在第一个晶化峰值温度进行退火。利用同步热分析仪(STA)、X射线衍射仪(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)测试分析合金的热曲线、微观结构和磁性能。初始晶化相随着FeZrB系列合金成分比例的改变而不同。在不同成分比例的合金中观察到四组不同的初始晶化相,例如α-Fe, α-Fe+Fe23B6型, α-Fe+α-Mn型和α-Fe+Fe2B+ZrB。通过TEM观察发现具有不同初始晶化产物的合金具有不同的形貌。具有不同初始晶化产物合金的饱和磁化强度(Ms)和矫顽力(Hc)存在以下关系:Ms(α-Fe)>Ms(α-Fe+α-Mn type)>Ms(α-Fe+Fe2B+ZrB)>Ms(α-Fe+Fe23B6-type), Hc (α-Fe+α-Mn type)>Hc(α-Fe+Fe2B+ZrB)>Hc(α-Fe+Fe23B6-type)>Hc(α-Fe).  相似文献   

8.
采用单辊快淬法制备(Fe1-x Cox)80Zr10B10(x=0,0.1,0.2,0.3)非晶合金,并对4种合金在不同温度下进行等温热处理。利用差热分析仪(DTA),X射线衍射仪(XRD),透射电镜(TEM)和振动样品磁强计(VSM)等测试手段对样品的热性能、微观结构及磁性能进行研究。结果表明,未添加Co元素的Fe80Zr10B10合金的热稳定性明显高于添加Co元素的合金,而(Fe1-x Cox)80Zr10B10(x=0.1,0.2,0.3)合金的热稳定性相差不大。Fe80Zr10B10和Fe72Co8Zr10B10合金的晶化过程相似;Fe64Co16Zr10B10和Fe56Co24Zr10B10合金的晶化过程相似。4种合金的矫顽力(Hc)呈现先上升后下降的趋势,在873 K达到最大值。  相似文献   

9.
采用单辊快淬法制备Fe40Co40Zr7V2B11和Fe40Co40Zr7V2B9Ta2两种非晶合金薄带,并对两种合金进行不同温度热处理。利用X射线衍射仪和扫描电镜研究合金的微观结构。结果表明:Fe40Co40Zr7V2B11合金的自由面存在α-Fe Co相(200)晶面择优取向,贴辊面为非晶结构;Fe40Co40Zr7V2B9Ta2合金的自由面和贴辊面均为非晶结构。两种合金自由面和贴辊面经不同温度退火后α-Fe Co相平均晶粒尺寸随退火温度的变化曲线完全不同。  相似文献   

10.
采用单辊旋淬法制备出Fe69Co8Nb7-xVxB15Cu1(x=0,2,5,7)系列非晶合金,将非晶合金在不同温度进行退火,通过X射线衍射仪、透射电镜和B-H磁滞回线仪对退火后合金的微观组织和软磁性能进行分析。结果表明:退火温度对合金的微观组织和软磁性能影响显著,当TaTg时,由于结构弛豫,内应力的释放,非晶合金的矫顽力(Hc)降低;当Tx1TaTx2时,由于bcc结构α-Fe(Co)纳米晶相的析出,合金的饱和磁感应强度(Bs)明显增大;当TaTx2时,由于α-Fe(Co)晶粒粗化和非磁性相的析出,合金的软磁性能急剧恶化。其中Fe69Co8Nb5V2B15Cu1非晶合金在580℃退火1 h,表现出极为优异的软磁性能,其Bs=1.15 T,Hc=0.9928 A/m,μi=48460,而Fe69Co8V7B15Cu1非晶合金在650℃退火1 h,则发生软磁到硬磁性能的转变。  相似文献   

11.
采用单辊急冷法制备一系列不同Co/Ni摩尔比的FeCoNiCrZr非晶薄带,并对该系非晶合金进行等温热处理。采用X射线衍射仪(XRD)和振动样品磁强计(VSM)研究Co/Ni摩尔比的变化对(Fe0.52Co0.48-xNix)73Cr17Zr10系非晶合金的晶化过程和磁性能的影响。结果表明:x在0.06~0.30之间变化时,所制备的合金薄带基本为非晶结构;(Fe0.52Co0.48-xNix)73Cr17Zr10(x=0.18,0.30)两种非晶合金的晶化过程为Am→α-Fe(Co)+Am′→α-Fe(Co)+Cr2Ni3+Fe3Ni2+Cr2Zr+未知相;Co/Ni摩尔比的增加增强了合金的热稳定性,抑制了退火后α-Fe(Co)相的析出。两种合金的饱和磁化强度Ms随退火温度的变化趋势相同,在低于第一晶化峰值温度θp1退火时,Ms随退火温度的升高逐步上升;在温度高于Tp1退火时,Ms随退火温度的升高而迅速下降。  相似文献   

12.
采用单辊快淬法制备一系列不同名义成分的Fe Zr B合金样品,并在第1个晶化峰值温度进行退火。利用同步热分析仪(STA)、X射线衍射仪(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)测试合金的热曲线、微观结构和磁性能。初始晶化相随着FeZrB系列合金成分比例的改变而不同。在不同成分比例的合金中观察到4组不同的初始晶化相,例如α-Fe,α-Fe+Fe_(12)Si_2ZrB,α-Fe+α-Mn和α-Fe+Fe_2B+ZrB。通过TEM观察发现具有不同初始晶化产物的合金具有不同的形貌。具有不同初始晶化产物合金的饱和磁化强度(Ms)和矫顽力(Hc)存在以下关系:M_(s(α-Fe))M_(s(α-Fe+α-Mn type))M_(s(α-Fe+Fe2B+ZrB))M_(s(α-Fe+Fe12Si2ZrB-type)), H_(c(α-Fe+α-Mn type))H_(c(α-Fe+Fe2B+ZrB))H_(c(α-Fe+Fe12Si2ZrB-type))H_(c(α-Fe))  相似文献   

13.
采用单辊快淬法制备Fe77Co2Zr9B10Cu2合金,并对该合金在600℃退火后,分别在炉内、空气和液氮中冷却,研究冷却条件对合金性能的影响。利用X射线衍射(XRD)和透射电镜(TEM)研究合金的微观结构;利用振动样品磁强计(VSM)测量合金的磁性能。结果表明,快淬态的Fe77Co2Zr9B10Cu2合金带含有α-Fe(Co)和H相。600℃退火后,在炉内冷却的合金中仅观察到α-Fe(Co)相,而经空气和液氮中冷却的合金中除α-Fe(Co)相仍然存在部分H相。600℃退火后,在炉内和空气中冷却后合金的磁性能相差不大。  相似文献   

14.
利用X射线衍射、透射电镜、振动样品磁强计和差热分析研究了非晶Sm5Fe80Cu1Zr3.5Si5B3C2.5合金中α-Fe/Sm2(Fe,Si)17Cx复合纳米相结构的形成过程、磁性及其晶化动力学.XRD结果表明,随着退火温度的升高,Sm5Fe80Cu1Zr3.5Si5B3C2.5非晶合金先后析出软磁相α-Fe和硬磁相Sm2(Fe,Si)17Cx;当经高温750℃晶化退火后,经Scherrer计算得到合金中α-Fe相和Sm2(Fe,Si)17Cx的晶粒尺寸分别为65.5和22.1nm,其矫顽力增加到58.11kA/m,剩磁为0.967T.晶化动力学分析发现,这种具有较低初始晶化激活能和阶段生长激活能的晶化行为是导致α-Fe相晶粒生长过于粗大和合金中α-Fe和Sm2(Fe,Si)17Cx复合纳米磁体磁耦合性能较差的根本原因.  相似文献   

15.
采用工业纯原料和水冷铜型真空吸铸法研制了直径2 mm的Fe61Co10Zr5W4B20,Fe63Co10Zr5W2B20,Fe63Co10Zr5W4B18三种铁基块状合金,采用X射线衍射法、差示扫描量热法研究了合金的结构和热稳定性,探讨了它们的非晶形成能力。试验结果表明:以上3种合金中,前两种成分的合金几乎均由非晶相组成,第一种合金的玻璃转变温度Tg、晶化温度Tx分别为542℃和617℃,过冷液相区宽度ΔTx达到了75 K;第二种合金的玻璃转变温度Tg、晶化温度Tx分别为521℃和611℃,过冷液相区宽度ΔTx高达90 K,两种铁基非晶合金(特别是第二种合金)具有高的热稳定性和大的非晶形成能力(GFA)。第三种合金由非晶和少量α-Fe晶体组成。  相似文献   

16.
Fe74Al4 Sn2(PSiBC)20块体非晶合金的制备与晶化研究   总被引:4,自引:0,他引:4  
利用铜模吸铸法制备了φ5mm×8mm×1mm的Fe74Al4Sn2P10Si4B4C2和Fe74Al4Sn2P11 C4B4Si1块体非晶合金圆环.Fe74Al4Sn2P10Si4B4C2和Fe74Al4Sn2P11C4B4Si1块体非晶合金具有较高的约化玻璃转变温度(Tg/Tm≈0.60).Fe74Al4Sn2P10Si4B4C2块体非晶合金的晶化过程是二步晶化非晶相→非晶相'+α-Fe→α-Fe+Fe3P+Fe2B+Fe3B+Fe3C,而Fe74Al4Sn2P11C4B4Si1块体非晶合金的晶化过程是一步晶化非晶相→α-Fe+Fe3P+Fe2B+Fe3B+Fe3C.一步晶化的Fe74Al4Sn2P11C4B4Si1块体非晶合金具有更宽的超冷液相区.二步晶化的Fe74Al4Sn2P10Si4B4C2块体非晶合金的热磁曲线分为四个阶段室温→Tg→Tx→Tp1→高温,而一步晶化的Fe74Al4Sn2P11G4B4Si1块体非晶合金的热磁曲线分为三个阶段室温→Tg→Tx→高温.α-Fe的析出导致铁基块体非晶合金饱和磁化强度值Ms上升,而结晶化合物Fe3P、Fe2B、Fe3B和Fe3C的同时析出导致Ms值的下降.  相似文献   

17.
利用单辊快淬法制备了Fe84Zr7B9非晶合金,并对其进行了不同温度的退火处理,在降温过程中采用不抽真空和持续抽真空两种方式.利用X射线衍射(XRD)和透射电镜(TEM)研究了热处理后合金的物相及显微组织.结果表明:在退火降温过程中不抽真空时,Fe84Zr7B9非晶合金的初始晶化产物为α-Fe相和B2O3相,晶化过程为...  相似文献   

18.
用X射线衍射方法研究了(FeCo)73.5Cu1Nb3(SiB)22.5非晶合金在不同温度退火的晶化行为及晶格常数的变化。500℃退火时,在非晶基体中析出α-Fe(Si)(bcc)相,620℃退火时仍没有新相出现,680℃退火后的Fe3B、Fe23B6化合物中含有Si、Nb。α-Fe(Wi)相的晶格常数α0随退火温度的升高先减小后增大,在620℃时最小为α0=0.2836nm,在退火过程中,晶化相的结构不随外加磁场发生变化。热磁曲线表明:合金淬火非晶态时的Curie温度Tc=330℃;α-Fe(Si)(bee)相的晶化温度Tx=516℃,Curie温度Tc=640℃。  相似文献   

19.
采用单辊快淬法制备3种Fe80-xCoxZr8Mo2B9Cu1(x=10、20、30)非晶合金,并对3种合金进行不同温度热处理,研究Co含量对该系列合金热稳定性和微观组织的影响。利用差热分析仪(DTA),X射线衍射仪(XRD)和透射电镜(TEM)等仪器测量样品的热性能和微观组织。研究结果表明,高Co含量合金的热稳定性较差。3种合金的晶化过程相似,晶化过程初期仅析出α-Fe(Co)晶粒。Co含量的增加增大了合金的平均晶粒尺寸。  相似文献   

20.
研究在常规退火前的高温短时间预退火对非晶Fe86Zr7B6Cu1合金晶化过程的影响,通过分析温度对形核速率和晶粒长大速率的影响规律,讨论预退火对非晶Fe86Zr7B6Cu1合金晶化过程的影响机制。结果表明,合适的预退火引起纳米晶Fe86Zr7B6Cu1合金中结晶α-Fe相的晶粒尺寸的减小和体积分数的增加。非晶Fe86Zr7B6Cu1合金经600℃退火1 h后的结晶α-Fe相的晶粒尺寸和体积分数分别为13.2 nm和65.2%,而在750℃保温2 min再在600℃退火1 h后的结晶α-Fe相的晶粒尺寸和体积分数分别为9.5 nm和72.4%。在750℃保温2 min再在600℃退火1 h后的试样比常规退火得到的试样具有更为优良的软磁性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号