首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen–Hoffman equation are ς = 10.68 erg/cm2 and ςe = 110.62 erg/cm2; and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-11. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be −394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2371–2380, 1998  相似文献   

2.
Crystallization kinetics of MC nylon (PA6) and polyazomethine (PAM)/MC nylon (PAM/PA6) both have been isothermally and nonisothermally investigated by different scanning calorimetry (DSC). Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The Avrami equation and Mo's modified method can describe the primary stage of isothermal and nonisothermal crystallization of PA6 and PAM/PA6 composite, respectively. In the isothermal crystallization process, the values of the Avrami exponent are obtained, which range from 1.70 to 3.28, indicating an average contribution of simultaneous occurrence of various types of nucleation and growth of crystallization. The equilibrium melting point of PA6 is enhanced with the addition of a small amount of rigid rod polymer chains (PAM). In the nonisothermal crystallization process, we obtain a convenient method to analyze the nonisothermal crystallization kinetics of PA6 and PAM/PA6 composites by using Mo's method combined with the Avrami and Ozawa equations. In the meanwhile, the activation energies are determined to be ?306.62 and ?414.81 KJ/mol for PA6 and PAM/PA6 (5 wt %) composite in nonisothermal crystallization process from the Kissinger method. Analyzing the crystallization half‐time of isothermal and nonisothermal conditions, the over rate of crystallization is increased significantly in samples with a small content of PAM, which seems to result from the increased nucleation density due to the presence of PAM rigid rod chain polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2844–2855, 2004  相似文献   

3.
The isothermal and nonisothermal crystallization kinetics of nylon 1111 was extensively studied using differential scanning calorimetry (DSC). The equilibrium melting temperature of nylon 1111 was determined to be 188°C. In this article, the Avrami equation was used to describe the isothermal crystallization behavior of nylon 1111. On the basis of the DSC results, the Avrami exponent, n, was determined to be around 3 during the isothermal crystallization process. Nonisothermal crystallization was analyzed using both the Avrami equation as modified by Jeziorny and an equation suggested by Mo. The larger value of the Avrami exponent, n, during the nonisothermal crystallization process indicates that the development of nucleation and crystal growth are more complicated during the nonisothermal crystallization for nylon 1111, and that the nucleation mode might simultaneously include both homogeneous and heterogeneous nucleations. The isothermal and nonisothermal crystallization activation energies of nylon 1111 were determined to be ?132 kJ/mol and ?121 kJ/mol using the Arrhenius equation and the Kissinger method, respectively. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) (PEKEKK) were investigated by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could only describe the primary stage of nonisothermal crystallization kinetics of PEKEKK. Also, the Ozawa equation could not describe its nonisothermal crystallization behavior. A convenient and reasonable kinetic approach was used to describe the nonisothermal crystallization behavior. The crystallization activation energy were estimated to be −264 and 370 KJ/mol for nonisothermal melt and cold crystallization by the Kissinger method. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2865–2871, 2000  相似文献   

5.
The isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide) (PA‐10T) was studied by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization process. The commonly used Avrami equation and the one modified by Jeziorny were used, respectively, to describe the primary stage of isothermal and nonisothermal crystallization. The Avrami exponent n was evaluated to be in the range of 2.36–2.67 for isothermal crystallization, and of 3.05–5.34 for nonisothermal crystallization. The Ozawa analysis failed to describe the nonisothermal crystallization behavior, whereas the Mo–Liu equation, a combination equation of Avrami and Ozawa formulas, successfully described the nonisothermal crystallization kinetics. In addition, the value of crystallization rate coefficient under nonisothermal crystallization conditions was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 819–826, 2004  相似文献   

6.
The crystallization process of a new polyamide, nylon 1313, from the melt has been thoroughly investigated under isothermal and nonisothermal conditions. During isothermal crystallization, relative crystallinity develops in accordance with the Avrami equation with the exponent n ≈ 2 based on DSC analysis. Under nonisothermal conditions, several different analysis methods were used to elucidate the crystallization process. The Avrami exponent n is greater in the isothermal crystallization process, indicating that the mode of nucleation and the growth of the nonisothermal crystallization for nylon 1313 are more complicated, and that the nucleation mode might include both homogeneous and heterogeneous nucleation simultaneously. The calculated activation energy is 214.25 kJ/mol for isothermal crystallization by Arrhenius form and 135.1 kJ/mol for nonisothermal crystallization by Kissinger method, respectively. In addition, the crystallization ability of nylon 1313 was assessed by using the kinetic crystallizability parameters G. Based on this parameter, the crystallizability of many different polymers was compared theoretically. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1415–1422, 2007  相似文献   

7.
Isothermal and nonisothermal crystallization kinetics of even‐odd nylon 10 11 were investigated by differential scanning calorimetry (DSC). Equilibrium melting point was determined to be 195.20°C. Avarmi equation was adopted to describe isothermal and nonisothermal crystallization. A new relation suggested by Mo was used to analyze nonisothermal crystallization and gave a good result. The crystallization activation energies have been obtained to be ?583.75 and ?270.06 KJ/mol for isothermal and nonisothermal crystallization, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1637–1643, 2005  相似文献   

8.
Nylon 10 12, a newly industrialized engineering plastic, shows a double‐melting phenomenon during melting. Partial melts were obtained when the sample was heated to the temperature between the two melting peaks. A differential scanning calorimeter was used to monitor the energies of the isothermal and nonisothermal crystallization from the partially melted samples. During isothermal crystallization, relative crystallinity develops with a time dependence described by the Avrami equation, with the exponent n = 1.0. For nonisothermal studies, kinetics treatments based on the Avrami and Ozawa equations are presented to describe the crystallization process. It was found that the two treatments can describe the nonisothermal crystallization from the partially melted samples. The derived Avrami and Ozawa exponents are all about 1.0, which means that the partially melted samples crystallize by one‐dimensional growth, which may cause thickening of the lamellae. We calculated the crystallization activation energies for isothermal and nonisothermal crystallization from the partially melted samples. It was found that the activation energy determined by the Kissinger method was not rational, which may be attributed to the free‐nucleation process for nonisothermal crystallization from partially melted samples. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1311–1319, 2003  相似文献   

9.
Differential scanning calorimetry (DSC) was used to investigate the isothermal and nonisothermal crystallization kinetics of polyamide11 (PA11)/multiwalled carbon nanotube (MWNTs) composites. The Avrami equation was used for describing the isothermal crystallization behavior of neat PA11 and its nanocomposites. For nonisothermal studies, the Avrami model, the Ozawa model, and the method combining the Avrami and Ozawa theories were employed. It was found that the Avrami exponent n decreased with the addition of MWNTs during the isothermal crystallization, indicating that the MWNTs accelerated the crystallization process as nucleating agent. The kinetic analysis of nonisothermal crystallization process showed that the presence of carbon nanotubes hindered the mobility of polymer chain segments and dominated the nonisothermal crystallization process. The MWNTs played two competing roles on the crystallization of PA11 nanocomposites: on the one hand, the MWNTs serve as heterogeneous nucleating agent promoting the crystallization process of PA11; on the other hand, the MWNTs hinder the mobility of the polymer chains thus retarding the crystal growth process of PA11. The activation energies of PA11/MWNTs composites for the isothermal and nonisothermal crystallization are lower than neat PA11. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

10.
Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 °C using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (ΔE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.  相似文献   

11.
Pristine and functionalized multiwalled carbon nanotubes (MWNTs) were used to fabricate polyamide 6 (PA6) composites through melt blending. The functionalized MWNTs were obtained by grafting 1,6‐hexamethylenediamine (HMD) onto the pristine MWNTs to improve their compatibility with PA6 matrix. The effect of MWNTs on the isothermal crystallization and melting behavior of PA6 was investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). The Avrami and Lauritzen–Hoffmann equations are used to describe the isothermal crystallization kinetics. The values of the Avrami exponent found for neat PA6, the pristine MWNTs/PA6 and functionalized MWNTs/PA6 composite samples are about 4.0, 1.7, and 2.3, respectively. The activation energies are determined by the Arrhenius method, which is lower for the composites, ?320.52 KJ/mol for pristine MWNTs/PA6 and ?293.83 KJ/mol for functionalized MWNTs/PA6, than that for the neat PA6 (?284.71 KJ/mol). The following melting behavior reveals that all the isothermally crystallized samples exhibit triple melting endotherms at lower crystallization temperature and double melting endotherms at higher crystallization temperature. The multiple melting endotherms are mainly caused by the recrystallization of PA6 during heating. The resulting equilibrium melting temperature is lower for the composites than for neat PA6. In addition, polarizing microscopy (PLM) and small angle light scanning (SALS) were used to study the spherulite morphology. The results show that the MWNTs reduce the spherulite radius of PA6. This reduction is more significant for pristine MWNTs. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
We studied the crystallization behaviors of bio‐based BDIS polyamides synthesized from the following biomass monomers: 1,4‐butanediamine (BD), 1,10‐decanediamine (DD), itaconic acid (IA), and sebacic acid (SA). Isothermal crystallization, melting behavior, and nonisothermal crystallization of BDIS polyamides were investigated by differential scanning calorimetry (DSC). The Avrami equation was used to describe the isothermal crystallization of BDIS polyamides. The modified Avrami equation, the Ozawa equation, the modified Ozawa equation, and an equation combining the Avrami and Ozawa equations were used to describe the nonisothermal crystallization. The equilibrium melting point temperature of BDIS polyamide was determined to be 163.0°C. The Avrami exponent n was found to be in the range of 2.21–2.79 for isothermal crystallization and 4.10–5.52 for nonisothermal crystallization. POLYM. ENG. SCI., 56:829–836, 2016. © 2016 Society of Plastics Engineers  相似文献   

13.
A study has been made of the crystallization behavior of poly(aryl ether ether ketone), PEEK, under nonisothermal conditions. A differential scanning calorimeter (DSC) was used to monitor the energetics of the crystallization process from the melt. For nonisothermal studies, the melt was crystallized by cooling at rates from 1°C/min to 10°C/min. A kinetic analysis based on the recently proposed model for nonisothermal crystallization kinetics to remedy the drawback of the Ozawa equation was applied. The Avrami exponent for the nonisothermal crystallization process was strikingly different from that of the isothermal process, which indicates different crystallization behaviors. The results agree with the morphological observation reported in the literature. This study shows that correct interpretation of the Avrami exponent provides valuable information about the crystal structure and its morphology.  相似文献   

14.
Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.  相似文献   

15.
The isothermal and nonisothermal crystallization behavior of Nylon 12 was investigated using differential scanning calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of Nylon 12, the Avrami exponent (n) determined and its relevance to crystal growth discussed and an activation energy for the process evaluated using an Arrhenius type expression. The Lauritzen and Hoffman analysis was used to examine the spherulitic growth process of the primary crystallization stage of Nylon 12. The surface‐free energy and work of chain folding were calculated using a procedure reported by Hoffmann and the work of chain folding per molecular fold (σ) and chain stiffness of Nylon 12 (q) was calculated and compared to values reported for Nylons 6,6 and 11. The Jeziorny modification of the Avrami analysis, Cazé and Chuah average Avrami parameter methods and Ozawa equation were used in an attempt to model the nonisothermal crystallization kinetics of Nylon 12. A combined Avrami and Ozawa treatment, described by Liu, was used to more accurately model the nonisothermal crystallization kinetics of Nylon 12. The activation energy for nonisothermal crystallization processes was determined using the Kissinger method for Nylon 12 and compared with values reported previously for Nylon 6,6 and Nylon 11. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.  相似文献   

17.
Melting behavior, nonisothermal crystallization and isothermal crystallization kinetics of polypropylene (PP) with metallocene‐catalyzed linear low density polyethylene (mLLDPE) were studied by differential scanning calorimetry (DSC). The results show that PP and mLLDPE were partially miscible. The Avrami analysis was applied to analyze the nonisothermal and isothermal crystallization kinetics of the blends, the Mo Z.S. method was used to take a comparison in nonisothermal kinetics. Values of Avrami exponent indicate the crystallization nucleations of both pure PP and PP in the blends were heterogeneous, the growth of spherulites is tridimensional and the spherulites in the blends were more perfect than that in pure PP. The crystallization activation energy was estimated by Kissinger method and Arrhenius equation and the two methods draw similar results. The mLLDPE increased the crystallization rate of PP in nonisothermal crystallization process and decreased it in isothermal process. The results from nonisothermal crystallization and isothermal crystallization kinetics were not consistent because the two processes were completely different. Addition of minor mLLDPE phase favors to increase the overall crystallinity of PP, showing the mLLDPE entered the PP crystals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Nonisothermal and isothermal crystallization kinetics of biodegradable poly(ethylene succinate) (PES) from the amorphous state were studied by differential scanning calorimetry (DSC). For the nonisothermal crystallization, there were two crystallization exotherms upon heating from the amorphous state. One major crystallization exotherm located at low temperature corresponded to the real cold crystallization of PES, while the other minor one located at high temperature may correspond to the melt-recrystallization of the unstable crystals formed during the nonisothermal crystallization earlier. Several methods, such as Avrami equation, Tobin equation and Ozawa equation, were applied to describe the nonisothermal crystallization process of PES. Meanwhile, Avrami equation was also employed to study the isothermal crystallization of PES from the amorphous state. Similar to the nonisothermal crystallization the minor crystallization exotherm was also found in the DSC trace upon heating to the melt after the isothermal cold crystallization finished completely, and was attributed to the melt-recrystallization of the unstable crystals formed during the isothermal cold crystallization. Temperature modulated differential scanning calorimetry (TMDSC) was used in this work to investigate the origin of the minor crystallization exotherm located at high temperature, and the TMDSC experiments gave a direct evidence that the origin of the minor crystallization exotherm was from the melt-recrystallization of the originally existed unstable crystals formed through previous crystallization.  相似文献   

19.
The isothermal and nonisothermal crystallization behavior of high density polyethylene (HDPE) containing various zero, one, and two dimensional (0‐D, 1‐D, and 2‐D) carbon nanofillers were investigated by means of differential scanning calorimetry. For a given temperature, the isothermal crystallization incubation time of HDPE became longer with the addition of lower dimensional carbon nanofillers, and the isothermal crystallization rate got slower. The values of Avrami and Tobin exponents indicated that the isothermal crystallization of HDPE followed two‐dimensional crystal growth in the presence of 2‐D and 1‐D carbon nanofillers, while exhibited three‐dimensional heterogeneous crystal growth in the presence of 0‐D carbon nanofillers. Contrary to the isothermal study, the nonisothermal crystallization of HDPE was accelerated in the presence of lower dimensional nanofillers. The nonisothermal crystallization data were finally analyzed using Ozawa and Mo methods. It was observed that only Mo approach could successfully describe the nonisothermal crystallization process of HDPE and HDPE/carbon nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
采用成盐、高温溶液缩聚两步法成功制备了半芳香族聚酰胺(PA)6T/6I/6。通过傅里叶变换红外光谱(FTIR)、氢核磁共振(1H⁃NMR)分析了其分子链结构,并对其力学性能进行了测试表征,利用差示扫描量热法(DSC)对PA6T/6I/6的非等温结晶动力学进行了研究,使用Jeziorny法、Oazawa法和莫志深法修正的Avrami方程分别分析了PA6T/6I/6的非等温结晶行为。结果表明,通过Jeziorny法处理发现结晶过程分为主期结晶和次期结晶2个阶段,主期结晶阶段Avrami指数在1.08~1.09之间,晶体为异相成核,呈一维针状生长,次期结晶阶段Avrami指数在2.13~2.21之间,晶体为二维片状生长方式;Ozawa法处理曲线相关性低,表明不适用于描述PA6T/6I/6的非等温结晶过程;莫志深法修正的Avrami方程能较好地描述结晶过程,a值在0.89~0.90之间,FT)值在7.24~15.85之间;采用Kissinger方程计算求得PA6T/6I/6的非等温结晶活化能为-294.17 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号