首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Dongjo Kim 《Thin solid films》2007,515(19):7692-7696
We have developed a conductive ink containing silver nanoparticles from which the electrodes for organic thin film transistor were directly patterned by ink-jet printing. Nano-sized silver particles having ∼ 20 nm diameter was used for a direct metal printing. Silver conductive ink was printed on the heavily doped n-type silicon wafer with 200-nm thick thermal SiO2 layer as a substrate. To achieve a high line resolution and smooth conductive path, the printing conditions such as the inter-drop distance, stage moving velocity and temperature of the pre-heated substrates were optimized. After the heat-treatment at temperatures of 200 °C for 30 min, the printed silver patterns exhibit metal-like appearance and the conductivity. To fabricate a coplanar type TFTs, an active material of semiconducting oligomer, α,ω-dihexylquaterthiophene (DH4T) in a chlorobenzene was deposited between the ink-jet printed silver electrodes by drop casting. The OTFT with the ink-jetted source/drain electrodes shows general performance characteristics with good saturation behavior and no significant contact resistance as compared to the one with vacuum deposited electrodes. The electrical characteristic parameters of OTFT show the mobility of 1.3 × 10− 3 cm2 V− 1 s− 1 in the saturation regime, on/off current ratio over 103, and threshold voltage of about − 13 V.  相似文献   

2.
The electrical resistance of thin films of nickel, cobalt and nickel-cobalt alloys, evaporated at 0 °C substrate temperature in ultrahigh vacuum, was investigated. It was established that stable resistance values are reached after heating at 250 °C. The behaviour of these films in ultrahigh vacuum immediately after evaporation and during heating depends on their original degree of ordering.  相似文献   

3.
The effect of addition of Ag on the microstructure and electrical properties of sol-gel derived SnO2-glass composites was examined. Comparisons of the microstructures and electrical properties were carried out between glass composites prepared by a sol-gel method and a conventional one using glass frit. The glass composite gels and the SnO2-glass powder mixtures containing AgNO3 were calcined at 500 °C in order to decompose AgNO3 into Ag and then fired at 900 °C. In the sol-gel derived glass composites, the grain growth of Ag was suppressed and Ag particles connected mutually at the boundaries of aggregated gel particles to form three-dimensional networks. Thus, the glass composite derived by the sol-gel method showed a high electrical conductivity and a positive temperature coefficient of resistance (TCR). The highly electrical conductive paths of Ag in the glass composite were effectively formed when powder compacts were formed at a higher pressure. On the other hand, in the glass composites prepared using SnO2-glass powder mixtures, coarse-grained Ag particles were isolated in closed pores regardless of the forming pressure, and therefore did not contribute to electrical conduction in the glass composite.  相似文献   

4.
In recent years, efforts to prepare flexible highly conductive polymer composites at low temperatures for flexible electronic applications have increased significantly. Here, we describe a novel approach for the preparation of flexible highly conductive polymer composites (resistivity: 2.5 × 10−5 Ω cm) at a low temperature (150 °C), enabling the wide use of low cost, flexible substrates such as paper and polyethylene terephthalate (PET). The approach involves (i) in situ reduction of silver carboxylate on the surface of silver flakes by a flexible epoxy (diglycidyl ether of polypropylene glycol) to form highly surface reactive nano/submicron-sized particles; (ii) the in situ formed nano/submicron-sized particles facilitate the sintering between silver flakes during curing. Morphology and Raman studies indicated that the improved electrical conductivity was the result of sintering and direct metal-metal contacts between silver flakes. This approach developed for the preparation of flexible highly conductive polymer composites offers significant advantages, including simple low temperature processing, low cost, low viscosity, suitability for low-cost jet dispensing technologies, flexibility while maintaining high conductivity, and tunable mechanical properties. The developed flexible highly conductive materials with these advantages are attractive for current and emerging flexible electronic applications.  相似文献   

5.
Ni:SiO2 granular films have been prepared by atom beam sputtering technique under ambient conditions. These films have been subsequently annealed at 200-600 °C temperature. GAXRD and TEM analyses show the growth of Ni particles and improvement in crystallinity with increase in annealing temperature. Selected area electron diffraction and XPS analyses show the presence of a small quantity of NiO phase in addition to metallic Ni. Room temperature magnetic measurements indicate that the films annealed at lower temperatures (≤400 °C) are superparamagnetic and the film annealed at 600 °C is ferromagnetic. Magnetic results at 5 K are explained on the basis of exchange bias between Ni particles and surrounding nickel oxide. Systematic field emission studies on as-deposited and annealed films show a turn-on field ∼6.2-13.5 V/μm corresponding to an emission current density of ∼1 A/m2. Field emission results are explained on the basis of electrical inhomogeneity effects.  相似文献   

6.
采用化学镀手段制备金属镍包覆的超高分子量聚乙烯复合粒子,通过热压成型方法制得具有隔离结构的超高分子量聚乙烯(UHMWPE)/镍(Ni)高导电复合材料。通过调节金属(镍)镀层厚度及加工温度考察不同Ni含量及加工温度对复合材料导电性能的影响。结果表明,复合材料具有明显的导电逾渗行为;通过化学镀工艺可有效提高金属填料与基体的结合力,同时实现金属镍在聚合物基体中的选择性稳定分布,构建具有隔离结构的导电网络,使得复合材料的逾渗值降低至1.02%(体积分数)。基于金属填料优异的导电性能,在Ni体积分数仅为2.53%时,复合材料的电导率达到2648S/m。此外,降低复合材料的加工成型温度有助于减少加工过程对导电网络的破坏作用,从而有效降低复合材料的导电逾渗值,对提高复合材料导电性能具有重要意义。  相似文献   

7.
Formation and composition analyses of titanium oxinitride nanocrystals (NCs) fabricated via treating a magnetron co-sputtered thin film of titanium and silicon dioxide with a rapid thermal annealing in nitrogen ambient were demonstrated for nonvolatile memory applications. Phase separation characteristics with different annealing conditions were examined by transmission electron microscopy and chemical bonding characteristics were confirmed by X-ray photon emission spectra. It was observed that a blanket layer composed mainly of titanium oxide was still present as annealing temperature was increased to 700 °C, associated with the thermodynamically stable phase of titanium oxide. Furthermore, a higher thermal treatment of 900 °C induced formation of a well-separated NC structure and caused simultaneously partial nitridation of the titanium oxide, thereby forming titanium oxinitride NCs. A significant capacitance-voltage hysteresis in threshold voltage shift at 1 V was easily achieved under a small sweeping voltage range of + 2 V/−2 V, and a memory window retention of 2.2 V was obtained after 107 s by extrapolation under a 1 s initial-program/erase condition of + 5 V/−5 V, respectively.  相似文献   

8.
Copper conductive film was synthesized at low temperature onto a glass substrate by thermal decomposition of complexes of copper (II) formate and n-octyl amine in nitrogen atmosphere. The film generated by calcination above 110 °C indicated electrical conductivities, resulting in the lowest resistivity of 2 × 10− 5 Ω cm by calcination at 140 °C. The copper conductive film consisted of spherical copper nanoparticles that were a mixture of large and small particles, which resulted in low volume resistivity.  相似文献   

9.
ZnO-based varistors containing Ag particles (abbreviated as Z-Ag) were prepared using the conventional solid-state reaction method. The sintering and electrical properties of Z-Ag composites show that the composites can be achieved at a lower sintering temperature (920 °C) relative to that of a commercial ZnO-based varistor. The composites possess non-ohmic behavior analogous to that of the ZnO-based varistor, and the nonlinear voltage can be easily controlled by the content of Ag particles in the ceramic matrix. Meanwhile, the dielectric constant and dissipation factor indicate that the composites have enhanced dielectric properties at room temperature with increasing content of Ag particles, especially at frequencies of 0.5-30 kHz. The mechanisms involved are discussed.  相似文献   

10.
Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 °C, −12 °C, −40 °C/+85 °C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one – the paste with conductive polymer PEDOT:PSS.  相似文献   

11.
TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (Ts) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low Ts (50 °C) have shown lower resistivity than those at high Ts (250 °C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 °C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films.  相似文献   

12.
《Materials Letters》2005,59(2-3):266-270
Electrical conductive composites, in which RuO2 particles are dispersed throughout a glass matrix, have been successfully fabricated by sintering at 850 °C. The sensing efficacy of conductive glass matrix composites was investigated in real time by subjecting samples to tensile tests and measuring its electrical resistance. The electrical resistance change increased remarkably with increasing strain. It is shown that the excellent sensitivity of the electrical resistance change in the low strain range is attributed to microbreakage or deformation of conduction paths between RuO2 particles due to brittle fracture of the glass matrix. The electrical resistance behavior during cyclic loading is characterized by a residual electrical resistance that increases with each load cycle.  相似文献   

13.
Soo H. Kim 《Materials Letters》2007,61(10):2079-2083
We demonstrate gas-phase (aerosol) generation of diameter-controlled carbon nanotubes (CNTs) by employing size-controlled monodisperse nickel nanoparticles produced by the combination of pulsed laser ablation and electrostatic classification. The electrostatic classifier sorted agglomerated mono-area nickel particles, and then a subsequent heating process at ∼ 1200 °C created sintered single primary particles with very narrow size distribution. These isolated single primary particles were then sent to an aerosol reactor where free-flight CNTs were grown with acetylene and hydrogen mix at temperature of ∼ 750 °C. The resulting CNTs formed in this continuous gas-phase process were found to have a uniform diameter, which is commensurate with the diameter of the size-controlled catalytic nickel particles.  相似文献   

14.
The electrical properties of aligned nickel powder-filled cement-based composites and the abrasion-sensing properties of these composites, as evaluated based on the change in their resistance at varying abrasion depths, were investigated in this paper. Micrograph characterization of nickel powder distribution indicates that the electrical conduction path preferentially forms along the direction of the nickel powder alignment, which leads to increasingly anisotropic electrical properties under greater magnetic field strengths. The level of anisotropy was also determined to be strongly dependent on the nickel powder content. The maximum anisotropic electrical properties were achieved at the percolation threshold content of the nickel powder, which is the critical point for the formation of an effective conductive network. Based on the cement-based composites anisotropic electrical properties and a sectionalized electrode design, the composites filled with aligned nickel powder demonstrated good abrasion-sensing properties, with humidity and temperature self-compensation abilities.  相似文献   

15.
In this work, the thermal stress development in anisotropic fiber-reinforced polymer composites is investigated for temperatures below the glass transition temperature of the resin. By applying two independent experimental methodologies, it was found that the initial thermal (residual) strain in the reinforcing fibers is compressive of about − 0.04% at ambient temperatures. This is due to the mismatch of the thermal expansion coefficient between the polymer matrix and fiber, as the material is cooled down from the processing temperature. However, on reheating the composites the compressive stress in the fiber gradually diminishes and becomes zero at 50 °C. Further heating to 100 °C introduces tensile strains in the fiber of maximum of 0.13%. The conformity of these results to analytical models that relate the composite thermal strain to the thermal expansion coefficients of fiber and resin, as well as, the fiber volume fraction, is examined. Finally, the possibility of tailoring the sign (positive, negative or, even, zero) of the composite thermal expansion coefficient of certain advanced composites by simply varying the thermal expansion of the polymer matrix, is discussed.  相似文献   

16.
Transparent conductive films of Al-doped ZnO (AZO) were deposited onto inexpensive soda-lime glass substrates by radio frequency (rf) magnetron sputtering using a ZnO target with an Al content of 3 wt%. The Taguchi method with a L9 orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to examine the performance characteristics of the coating operations. This study investigated the effect of the deposition parameters (rf power, sputtering pressure, thickness of AZO films, and substrate temperature) on the electrical, structural, morphological and optical properties of AZO films. The grey-based Taguchi method showed the electrical resistivity of AZO films to be about 9.15 × 10−3 Ω cm, and the visible range transmittance to be about 89.31%. Additionally, the films were annealed in a vacuum ambient (5.0 × 10−6 Torr) at temperatures of 400, 450, 500 and 600 °C, for a period of 30 min. It is apparent that the intensity of the X-ray peaks increases with annealing treatment, leading to improved crystallinity of the films. By applying annealing at 500 °C in a vacuum ambient for 30 min, the AZO films show the lowest electrical resistivity of 2.31 × 10−3 Ω cm, with about 90% optical transmittance in the visible region and a surface roughness of Ra = 12.25 nm.  相似文献   

17.
The demand for conductive textiles is increasing, owing to the need for lightweight and flexible conductive materials for a variety of applications, including electromagnetic shielding of electronic equipment. Herein we propose a process that combines the in situ synthesis of silver nanoparticles at the textile fibre surface followed by sintering of the nanoparticles to obtain highly conductive fabrics. The formation of silver particles at the nanoscale allowed for sintering to be performed efficiently, at reduced temperature and time, bestowing fabrics with high conductivity and capability of shielding electromagnetic radiation. The nanoparticle synthesis method entailed the precipitation of 2.0 g L−1 silver nitrate and further reduction with citrate, with the formation of a deposit of silver nanoparticles at the fabric surface. The amount of silver deposited (up to 195 mg of silver per g of fabric) resulted in moderate electrical conductivity with sheet resistance of 803 Ω/sq. Upon sintering, this value decreased dramatically to 5.2 Ω/sq. The sintering process was monitored by SEM, which showed that sintering at 200 °C for 30 min resulted in maximal electrical conductivity with the lowest amount of silver deposited, while forming a homogenous surface. Fabrics submitted to these sintering conditions maintained their sheet resistance and shielding effectiveness values, even after eight washing cycles.  相似文献   

18.
Highly transparent conductive Ga-doped ZnO (GZO) thin films have been prepared on glass substrates by metal organic chemical vapor deposition. The effect of Ga doping on the structural, electrical and optical properties of GZO films has been systematically investigated. Under the optimum Ga doping concentration (∼4.9 at.%), c-axis textured GZO film with the lowest resistivity of 3.6 × 10−4 Ω cm and high visible transmittance of 90% has been achieved. The film also exhibits low transmittance (<1% at 2500 nm) and high reflectance (>70% at 2500 nm) to the infrared radiation. Furthermore, our developed GZO thin film can well retain the highly transparent conductive performance in oxidation ambient at elevated temperature (up to 500 °C).  相似文献   

19.
Dry ice blockage in a CO2-solid-gas-flow-based ultra-low temperature cascade refrigeration system is investigated experimentally by a visualization test and a system study of the liquid CO2 blew into an expansion tube through a Throttle needle valve. The visualization test shows that dry ice sedimentation occurs in low flow velocity and the dry ice formation makes the heat transfer behavior of CO2 complicated. The sedimentation also occurs at low condensation temperature and low heating power input. Based on the present investigation, it is found that the present ultra-low temperature cascade refrigeration system is better to work at heating power input above 900 W and condensation temperature above −20 °C. At suitable operating condition, the present ultra-low temperature cascade refrigeration system has been shown the capability of achieving ultra-low temperature −62 °C continuously and stably.  相似文献   

20.
Synthesis and characterization of NiO-YSZ for SOFCs   总被引:1,自引:0,他引:1  
Nickel oxide and yttria-stabilized zirconia ceramic materials were prepared by three methods: physical mixture, a modified Pechini route, and impregnation with Ni(NO3)2·6H2O. Temperature-programmed reduction (TPR) analysis showed the presence of different reduction peaks for each sample and that the reduction temperature was influenced by the employed preparation procedure. Nickel oxide species are completely reduced at temperatures up to 1000 °C and their temperature-programmed reduction profiles indicated that a higher temperature reduction corresponds to a higher calcination temperature. Furthermore, the composites synthesized through impregnation presented nickel oxide species more easily reducible than those prepared by the two other methods. Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) evidenced a larger nickel oxide coating on yttria-stabilized zirconia for the composite synthesized through the impregnation method. The electrical conductivity of impregnation sample was 117 S cm−1 at 850 °C, a value three times higher than that of the physical mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号