首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
In this paper, carbon-supported cobalt-tripyridyl triazine (Co-TPTZ) complexes were synthesized by a simple chemical method, then heat-treated at 600, 700, 800, and 900 °C to optimize their activity for the oxygen reduction reaction (ORR). The resulting catalysts (Co-N/C) all showed strong catalytic activity toward the ORR, but the catalyst heat-treated at 700 °C yielded the best ORR activity. Co-N/C catalysts with several Co loadings - 0.64, 2.0, 2.96, 3.33, 5.28, and 7.18 wt% - were also synthesized and tested for ORR activity. X-ray diffraction and energy dispersive X-ray analysis were used to characterize these catalysts in terms of their structure and composition. To achieve further quantitative evaluation of the catalysts in terms of their ORR kinetics and mechanism, rotating disk electrode and rotating ring-disk electrode techniques were used with the Koutecky-Levich theory to obtain several important kinetic parameters: overall ORR electron transfer number, electron transfer coefficiency in the rate-determining step (RDS), chemical reaction rate constant, electron transfer rate constant in the RDS, exchange current density, and mole percentage of H2O2 produced in the catalyzed ORR. The overall electron transfer number for the catalyzed ORR was determined to be ∼3.5 with 14% H2O2 production, suggesting that the ORR catalyzed by Co-N/C catalysts is a mixture of 2- and 4-electron transfer pathways, dominated by a 4-electron transfer process; based on these measurements, an ORR mechanism is proposed based on the literature and our understanding, to facilitate further investigation. The stability of a Co-N/C catalyst was also tested by fixing a current density to record the change in electrode potential with time. For comparison, two other catalysts, Fe-N/C and TPTZ/C, were also tested for stability under the same conditions as the Co-N/C catalyst. Among these three, the 5 wt% Co-N/C was most stable.  相似文献   

2.
Carbon-supported non-noble metal catalysts with Fe as the metal and tripyridyl triazine (TPTZ) as the ligand (Fe-TPTZ/C) were synthesized using a simple chemical method. How the Fe loading in this Fe-TPTZ/C catalyst affected the ORR activity was investigated using several Fe loadings: 0.2, 0.4, 0.7, 2.7, 4.7, 5.8 and 7.8 wt%. The as-prepared catalysts were then heat-treated at 800 °C in an N2 environment to obtain catalysts of Fe–N/C. Energy dispersive X-ray spectroscopy (EDX) was used to identify the Fe–N/C catalysts. These Fe–N/C catalysts showed significant ORR activity improvement over the as-prepared Fe-TPTZ/C catalysts. The kinetics of the ORR catalyzed by the catalysts with different Fe loadings was studied using the rotating disk electrode technique. It was observed that a 4.7 wt% Fe loading yielded the best catalytic ORR activity. Regarding the overall ORR electron transfer number, it was found that as the catalyst's Fe loading increased, the overall ORR electron transfer number changed from 2.9 to 3.9, suggesting that increasing the Fe loading could alter the ORR mechanism from a 2-electron to a 4-electron transfer dominated process. The Tafel method was also used to obtain one important kinetic parameter: the exchange current density. A fuel cell was assembled using a membrane electrode assembly with 4.7 wt% Fe loaded Fe–N/C as the cathode catalyst, and the cell was tested for both performance and durability, yielding a 1000-h lifetime.  相似文献   

3.
A non-platinum cathode electrocatalyst must have the stability and catalytic activity for the oxygen reduction reaction (ORR) in order to be used in polymer electrolyte fuel cells (PEFCs). Titanium oxide catalysts as the non-platinum catalyst were prepared by the heat treatment of titanium sheets in the temperature range from 600 to 1000 °C. The prepared catalysts were chemically and electrochemically stable in 0.1 mol dm−3 H2SO4. The titanium oxide catalysts showed different catalytic activities for the ORR. The ORR of the catalysts heat-treated at around 900 °C occurred at the potential of about 0.65 V versus RHE. It is considered that the deference in the catalytic activity for the ORR of the heat-treated titanium oxide catalysts was due to the fact that the heat-treatment condition changed the material property of the catalyst surface. In particular, it was found that the catalytic activity for the ORR of the Ti oxide catalysts increased with the increase in the specific crystalline structure, such as the TiO2 (rutile) (1 1 0) plane and the work function. It is considered that a surface state change, such as the crystalline structure and work function, might affect the catalytic activity for the ORR.  相似文献   

4.
Cobalt based non-precious metal catalysts were synthesized using chelation of cobalt (II) by imidazole followed by heat-treatment process and investigated as a promising alternative of platinum (Pt)-based electrocatalysts in proton exchange membrane fuel cells (PEMFCs). Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements were used to characterize the synthesized CoNx/C catalysts. The activities of the catalysts towards oxygen reduction reaction (ORR) were investigated by electrochemical measurements and single cell tests, respectively. Optimization of the heat-treatment temperature was also explored. The results indicate that the as-prepared catalyst presents a promising electrochemical activity for the ORR with an approximate four-electron process. The maximum power density obtained in a H2/O2 PEMFC is as high as 200 mW cm−2 with CoNx/C loading of 2.0 mg cm−2.  相似文献   

5.
Hansan Liu 《Electrochimica acta》2007,52(13):4532-4538
Ultrasonic spray pyrolysis (USP) was used to synthesize a high-surface-area CoTMPP/C catalyst for oxygen reduction reaction (ORR). SEM micrographs showed that the USP-derived CoTMPP/C consists of spherical, porous and uniform particles with a diameter of 2-5 μm, which is superior to that with a random morphology and large particle sizes (up to 100 μm) synthesized by the conventional heat-treatment method. BET results revealed that the USP-derived catalyst had a higher specific surface area (834 m2 g−1) than the conventional one. Cyclic voltammetric, rotating ring-disk electrode (RRDE) and H2-air PEM fuel cell testing were employed to evaluate the USP-derived CoTMPP/C. The kinetic current density of the USP-derived catalyst at 0.7 V versus NHE was two times higher than that of the conventional catalyst. Compared to Pt/C catalyst, the USP-derived CoTMPP/C catalyst showed a strong methanol tolerance and a higher ORR activity in the presence of methanol. In a H2-air PEM fuel cell with USP-derived CoTMPP/C as the cathode catalyst, the cell performance was much higher than that with conventional heat-treated CoTMMP/C as the catalyst.  相似文献   

6.
Fe-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cell conditions have been prepared by adsorbing two Fe precursors on various commercial and developmental carbon supports. The resulting materials have been pyrolyzed at 900 °C in an atmosphere rich in NH3. The Fe precursors were: iron acetate (FeAc) and iron tetramethoxy phenylporphyrin chloride (ClFeTMPP). The nominal Fe content was 2000 ppm (0.2 wt.%). The carbon supports were HS300, Printex XE-2, Norit SX-Ultra, Ketjenblack, EC-600JD, Acetylene Black, Vulcan XC-72R, Black Pearls 2000, and two developmental carbon black powders, RC1 and RC2 from Sid Richardson Carbon Corporation. The catalyst activity for ORR has been analyzed in fuel cell tests at 80 °C as well as by cyclic voltammetry in O2 saturated H2SO4 at pH 1 and 25 °C, while their selectivity was determined by rotating ring-disk electrode in the same electrolyte. A large effect of the carbon support was found on the activity and on the selectivity of the catalysts made with both Fe precursors. The most important parameter in both cases is the nitrogen content of the catalyst surface. High nitrogen content improves both activity towards ORR and selectivity towards the reduction of oxygen to water (4e reaction). A possible interpretation of the activity and selectivity results is to explain them in terms of two Fe-based catalytic sites: FeN2/C and FeN4/C. Increasing the relative amount of FeN2/C improves both activity and selectivity of the catalysts towards the 4e reaction, while most of the peroxide formation may be attributed to FeN4/C. When FeAc is used as Fe precursor, iron oxide and/or hydroxide are also formed. The latter materials have low catalytic activity for ORR and reduce O2 mainly to H2O2.  相似文献   

7.
Pt-Fe/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution, and then were heat-treated under H2/Ar (10 vol.%) at moderate temperature (300 °C, Pt-Fe/C300) or high temperature (900 °C, Pt-Fe/C900). As comparison, Pt-Fe/C alloy catalyst was prepared by a two-step method (Pt-Fe/C900B). X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that particles size of the catalyst increases with the increase of treatment temperatures. Pt-Fe/C300 catalyst has a mean particle size of 2.8 nm (XRD), 3.6 nm (TEM) and some Pt-Fe alloy was partly formed in this sample. Pt-Fe/C900B catalyst has the biggest particle size of 6.2 nm (XRD) and the best Pt-Fe alloy form. Cyclicvoltammetry (CV) shows that Pt-Fe/C300 has larger electrochemical surface area than other Pt-Fe/C and the highest utilization ratio of 76% among these Pt-based catalysts. Rotating disk electrode (RDE) cathodic curves show that Pt-Fe/C300 has the highest oxygen reduction reaction (ORR) mass activity (MA) and specific activity (SA), as compared with Pt/C catalyst in 1.0 M HClO4. However, Pt-Fe/C catalyst does not appears to be a more active catalyst than Pt/C for ORR in 1.0 M HClO4 + 0.1 M CH3OH. Pt-Fe/C300 exhibits higher ORR activity and better performance than other Pt-Fe/C or Pt/C catalysts when employed for cathode in direct methanol single cell test, the enhancement of the cell performance is logically attributed to its higher ORR activity, which is probably attributed to more Pt0 species existing and Fe ion corrosion from the catalyst.  相似文献   

8.
A new procedure has been introduced to enhance catalytic activity of ruthenium-selenium electro-catalysts for oxygen reduction, in which materials are treated under hydrogen atmosphere at elevated temperatures. The characterisation using scanning electron microscopy, energy dispersive spectroscopy or energy dispersive X-ray spectroscopy exhibited that the treatment at 400 °C made catalysts denser while their porous nature remained, led to a good degree of crystallinity and an optimum Se:Ru ratio. The half cell test confirms feasibility of the new procedure; the catalyst treated at 400 °C gave the highest reduction current (55.9 mA cm−2 at −0.4 V) and a low methanol oxidation effect coefficient (3.8%). The direct methanol fuel cell with the RuSe 400 °C cathode catalyst (2 mg RuSe cm−2) generated a power density of 33.8 mW cm−2 using 2 M methanol and 2 bar oxygen at 90 °C. The new procedure produced the catalysts with low decay rates. The best sample was compared to the Pt and to the reported ruthenium-selenium catalyst. Possible reasons for the observations are discussed.  相似文献   

9.
A carbon-supported non-noble metal catalyst, Fe-N/C, was used as the cathode catalyst to construct membrane electrolyte assemblies (MEAs) for a proton exchange membrane (PEM) fuel cell. The performance of such a fuel cell was then tested and diagnosed using electrochemical impedance spectroscopy (EIS) in the temperature range of 23-80 °C. Based on the EIS measurements, individual resistances, such as charger transfer resistance and membrane resistance, were obtained and used to simulate polarization curves (current-voltage (I-V) curves). A close agreement between the simulated I-V curves and the measured curves demonstrates consistency between the polarization and EIS data. The temperature-dependent parameters obtained via EIS, such as apparent exchange current densities and electrolyte membrane conductivities, were also used to acquire activation energies for both the oxygen reduction reaction (ORR) catalyzed by an Fe-N/C catalyst and the proton transport process across the electrolyte membrane. In addition, the maximum power densities for such a fuel cell were also analyzed.  相似文献   

10.
Active, carbon-supported Ir-V nanoparticle catalysts have been synthesized by an ethylene glycol reduction method under controlled conditions at pH 10-13 and 120 °C, then further reduced at elevated temperature from 150 to 500 °C using IrCl3 and NH4VO3 as the Ir and V precursors. The nanostructured catalysts have been characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM). Ir nanoparticles, after modification with V, show a narrow particle size distribution in the range 0.5-4.5 nm, centered at 1.8 nm, and are uniformly dispersed on Vulcan XC-72. No particle agglomeration was observed, not even at high V loadings (V:Ir = 4:1 in atomic ratio). Investigation of the catalytic activity of the Ir-V/C by means of cyclic voltammetry (CV) and linear sweep voltammetry (LSV) employing a rotating disk electrode (RDE) has revealed that the presence of V may suppress the electrochemical oxidation of Ir and stabilize the Ir active centers. About six times higher kinetic current density was obtained for Ir-V/C compared to that of the pure Ir/C catalyst at 0.8 V versus RHE for the oxygen reduction reaction (ORR). The ORR in acid solution proceeds by an approximately four-electron pathway, through which molecular oxygen is directly reduced to water. The performance of a membrane electrode assembly (MEA) prepared with the most active 40% Ir-10% V/C as the cathode catalyst in a single proton-exchange membrane fuel cell (PEMFC) generated a maximum power density of 517 mW cm−2 at 0.431 V and 70 °C, and 100 h of stable cell operation due to no loss of catalyst sites on the cathode.  相似文献   

11.
Kinetics of RuxMoySez nanoparticles dispersed on carbon powder was studied in 0.5 M H2SO4 electrolyte towards the oxygen reduction reaction (ORR) and as cathode catalysts for a proton exchange membrane fuel cell (PEMFC). RuxMoySez catalyst was synthesized by decarbonylation of transition-metal carbonyl compounds for 3 h in organic solvent. The powder was characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Catalyst is composed of uniform agglomerates of nanocrystalline particles with an estimated composition of Ru6Mo1Se3, embedded in an amorphous phase. The electrochemical activity was studied by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. Tafel slopes for the ORR remain invariant with temperature at −0.116 V dec−1 with an increase of the charge transfer coefficient in dα/dT = 1.6 × 10−3, attributed to an entropy turnover contribution to the electrocatalytic reaction. The effect of temperature on the ORR kinetics was analyzed resulting in an apparent activation energy of 45.6 ± 0.5 kJ mol−1. The catalyst generates less than 2.5% hydrogen peroxide during oxygen reduction. The RuxMoySez nanoparticles dispersed on a carbon powder were tested as cathode electrocatalyst in a single fuel cell. The membrane-electrode assembly (MEA), included Nafion® 112 as polymer electrolyte membrane and commercial carbon supported Pt (10 wt%Pt/C-Etek) as anode catalyst. It was found that the maximum performance achieved for the electro-reduction of oxygen was with a loading of 1.0 mg cm−2 RuxMoySez 20 wt%/C, arriving to a power density of 240 mW cm−2 at 0.3 V and 80 °C.  相似文献   

12.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

13.
2,3,5,6-Tetra(2-pyridyl)pyrazine (TPPZ) was employed as a ligand to prepare an iron(II) complex (Fe–TPPZ) that served as a precursor to synthesize carbon-supported catalysts (Fe–Nx/C) through heat-treatment at 600, 700, 800 and 900 °C under N2 atmosphere. Both the structure and composition of the synthesized Fe–Nx/C were analyzed by X-ray diffraction and energy-dispersive X-ray microanalysis, respectively. The rotating disk and ring-disk electrode measurements showed that these catalysts have strong ORR activity with an overall 4-electron transfer process through a (2 + 2)-electron transfer mechanism, which was assigned to the catalytic function of the Fe–Nx center. A study on the heat-treatment temperature on the ORR activity showed that 800 °C is the optimal temperature for the synthesized catalysts. Furthermore, the effect of both catalyst and Nafion® ionomer loadings in the catalyst layer on the corresponding ORR activity was also investigated. The kinetic parameters such as the chemical reaction rate between O2 and Fe–Nx/C (adduct formation reaction), the rate constant for the rate-determining step (RDS), and the electron numbers in the ORR, were obtained. The methanol tolerance of the catalyst was also tested. To validate the ORR activity, a membrane electrode assembly in which the cathode catalyst layer contained Fe–Nx/C was constructed and tested in a real fuel cell. The results obtained are encouraging when compared with similar non-noble catalysts.  相似文献   

14.
Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 °C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm−3 sulfuric acid at 30 °C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.  相似文献   

15.
Lei Zhang 《Electrochimica acta》2007,52(9):3088-3094
Carbon-supported Pd-Co alloy electrocatalysts were synthesized and characterized for the purpose of the fuel cell cathode oxygen reduction reaction (ORR). An impregnation method was employed for the synthesis, in which sodium borohydride was used as a reducing agent. The synthesized catalysts were characterized in terms of structural morphology and catalytic activity by XRD, XPS and electrochemical measurements. Surface cyclic voltammetry was used to confirm the formation of the Pd-Co alloy. In order to improve activity and stability, the catalysts were heat-treated in the temperature range of 300 °C to 700 °C. The optimal heat-treatment temperature was found to be 300 °C, where the average particle size of 8.9 nm, and the highest ORR catalytic activity, were obtained. The catalyzed ORR kinetics were also studied using the rotating disk electrode (RDE) method. The kinetic parameters were then obtained. Electrocatalytic ORR activity was also examined in an acidic solution containing methanol. The results showed that the synthesized Pd-Co/C catalyst has methanol tolerant capabilities.  相似文献   

16.
Tantalum (oxy)nitrides (TaOxNy) have been investigated as new cathodes for polymer electrolyte fuel cells without platinum. TaOxNy films were prepared using a radio frequency magnetron sputtering under Ar + O2 + N2 atmosphere at substrate temperatures from 50 to 800 °C. The effect of the substrate temperature on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the TaOxNy films were examined. The catalytic activity of the TaOxNy for the ORR increased with the increasing substrate temperature. The ORR current density at 0.4 V vs. RHE on TaOxNy prepared at 800 °C was approximately 20 times larger than that on TaOxNy prepared at 50 °C. The onset potential of the TaOxNy for the ORR was obtained at the ORR current density of −0.2 μA cm−2. The onset potential of the TaOxNy prepared at 800 °C was ca. 0.75 V vs. RHE. The X-ray diffraction patterns revealed that Ta3N5 structure grew as the substrate temperature increased. While, the ionization potentials of all specimens were lower than that of Ta3N5, and decreased with the increasing substrate temperature. The TaOxNy which had Ta3N5 structure and lower ionization potential might have a definite catalytic activity for the ORR.  相似文献   

17.
We investigated the effect of CoSe2/C nanoparticle loading rate on oxygen reduction reaction (ORR) activity and H2O2 production using the rotating disk electrode and the rotating ring-disk electrode techniques. We prepared carbon-supported CoSe2 nanoparticles with different nominal loading rates and evaluated these samples by means of powder X-ray diffraction. All the catalysts had an OCP value of 0.81 V vs. RHE. H2O2 production during the ORR process decreased with an increase in catalytic layer thickness. This decrease was related to the CoSe2 loading on the disk electrode. H2O2 production also decreased with increasing catalytic site density, a phenomenon related to the CoSe2 loading rate on the carbon substrate. The cathodic current density significantly increased with increasing catalytic layer thickness, but decreased with increasing catalytic site density. In the case of 20 wt% CoSe2/C nanoparticles at 22 μg cm−2, we determined that the transfer process involves about 3.5 electrons.  相似文献   

18.
The performance of different Cu/CeO2/Al2O3 catalysts of varying compositions is investigated for the oxidative steam reforming of methanol (OSRM) in order to produce the hydrogen selectively for polymer electrolyte membrane (PEM) fuel cell applications. All the catalysts were prepared by co-precipitation method and characterized for their surface area, pore volume and oxidation–reduction behavior. The effect of various operating parameters studied are as follows: reaction temperature (200–300 °C), contact-time (W/F = 3–15 kgcat s mol− 1) and oxygen to methanol (O/M) molar ratio (0–0.5). The steam to methanol (S/M) molar ratio = 1.5 and pressure = 1 atm were kept constant. Among all the catalysts studied, catalyst Cu–Ce–Al:30–20–50 exhibited 100% methanol conversion and 179 mmol s− 1 kgcat− 1 hydrogen production rate at 280 °C with carbon monoxide formation as low as 0.19%. The high catalytic activity and hydrogen selectivity shown by ceria promoted Cu/Al2O3 catalysts is attributed to the improved specific surface area, dispersion and reducibility of copper which were confirmed by characterizing the catalysts through temperature programmed reduction (TPR), CO chemisorption, X-ray diffraction (XRD) and N2 adsorption–desorption studies. Reaction parameters were optimized in order to produce hydrogen with carbon monoxide formation as low as possible. The time-on-stream stability test showed that the Cu/CeO2/Al2O3 catalysts were quite stable.  相似文献   

19.
Masanori Yamada 《Polymer》2005,46(9):2986-2992
The development of anhydrous proton conducting membrane is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 °C). In this study, we have investigated the acid-base hybrid materials by mixing of strong phosphonic acid polymer of poly(vinylphosphonic acid) (PVPA) with the high proton-exchange capacity and organic base of heterocycle, such as imidazole (Im), pyrazole (Py), or 1-methylimidazole (MeIm). As a result, PVPA-heterocycle composite material showed the high proton conductivity of approximately 10−3 S cm−1 at 150 °C under anhydrous condition. In particular, PVPA-89 mol% Im composite material showed the highest proton conductivity of 7×10−3 S cm−1 at 150 °C under anhydrous condition. Additionally, the fuel cell test of PVPA-89 mol% Im composite material using a dry H2/O2 showed the power density of approximately 10 mW cm−2 at 80 °C under anhydrous conditions. These acid-base anhydrous proton conducting materials without the existence of water molecules might be possibly used for a polymer electrolyte membrane at intermediate temperature operations under anhydrous or extremely low humidity conditions.  相似文献   

20.
This study proposes a novel layer wise anode structure to improve the CO-tolerance ability and utilization efficiency of catalyst. The layer wise structure consists of an outer and an inner catalyst layer. The outer catalyst layer acting as a CO barrier is composed of two nano-Ru layers (0.06 mg cm−2) by magnetron sputtering deposition method and a Pt50-Ru50 layer (0.10 mg cm−2) by screen-printing method on the GDL. The inner catalyst layer providing the hydrogen oxidation reaction is a pure Pt layer (0.07 mg cm−2) prepared by direct-printing method on PEM. The roles of the outer and inner catalyst layer relating to the improvement of CO-tolerance ability and utilization efficiency of catalyst for the proposed catalyst layer structure are investigated in this paper. SEM, X-ray, EDS and EPMA analysis were used to characterize microstructures, phases, chemical composition and distributions for the obtained electrocatalyst layers. The hydrogen fuel containing 50 ppm CO/hydrogen fuel containing 50 ppm CO + 2% O2 is continuously fed to the anode side to investigate the dependence of CO-tolerance ability over time for the MEAs, respectively. The results demonstrate that this proposed anode catalyst layer structure presents a superior CO-tolerance ability and performance to those of conventional and Huag's structures in both oxygen free and oxygen present CO containing hydrogen fuels as well as pure hydrogen fuel. The filtering effect of the outer catalyst layer causes the improved CO-tolerance capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号